- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 演绎推理概念辨析
- 大前提、小前提、结论的判断
- 三段论运用错误的分析
- 用三段论证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
老师带甲乙丙丁四名学生参加自主招生考试,考试结束后老师向学生了解考试情况,四名学生回答如下:甲说:“我们四人中有人考得好”,乙说:“我没有考好”,丙说:“ 我们四人都没有考好”,丁说:“甲和乙至少有一人没考好”.结果,四名学生中有两人说对了,则四名学生中说对了的两人是( )
A.丙丁 | B.甲乙 | C.甲丁 | D.乙丁 |
下面几种推理过程是演绎推理的是( )
A.某校高二8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人 |
B.由三角形的性质,推测空间四面体的性质 |
C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分 |
D.在数列![]() ![]() ![]() ![]() |
下面几种推理过程是演绎推理的是( )
A.对顶角相等,如果![]() ![]() ![]() |
B.由平面三角形的性质,推测空间四面体的性质 |
C.数列![]() ![]() ![]() ![]() ![]() ![]() |
D.由直角三角形、等腰三角形、等边三角形的内角和是![]() ![]() |
在下列命题中,①
的一个充要条件是
与它的共轭复数相等:
②利用独立性检验来考查两个分类变量
,
是否有关系,当随机变量
的观测值
值越大,“
与
有关系”成立的可能性越大;
③在回归分析模型中,若相关指数越大,则残差平方和越小,模型的拟合效果越好;
④若
,
是两个相等的实数,则
是纯虚数;
⑤某校高三共有
个班,
班有
人,
班有
人,
班有
人,由此推测各班都超过
人,这个推理过程是演绎推理.
其中真命题的序号为__________ .


②利用独立性检验来考查两个分类变量






③在回归分析模型中,若相关指数越大,则残差平方和越小,模型的拟合效果越好;
④若



⑤某校高三共有








其中真命题的序号为
有下列说法
①互斥事件不一定是对立事件,对立事件一定是互斥事件
②演绎推理是从特殊到一般的推理,它的一般模式是“三段论”
③残差图的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高
④若
,则事件
与
互斥且对立
⑤甲乙两艘轮船都要在某个泊位停靠4小时,假定它们在一昼夜的时间段中随机到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率为
.
其中正确的说法是______ (写出全部正确说法的序号).
①互斥事件不一定是对立事件,对立事件一定是互斥事件
②演绎推理是从特殊到一般的推理,它的一般模式是“三段论”
③残差图的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高
④若



⑤甲乙两艘轮船都要在某个泊位停靠4小时,假定它们在一昼夜的时间段中随机到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率为

其中正确的说法是
下列命题不正确的是( )
A.由样本数据得到的回归方程![]() ![]() |
B.相关指数![]() ![]() |
C.归纳推理和类比推理都是合情推理,合情推理的结论是可靠的,是正确的结论 |
D.演绎推理是由一般到特殊的推理 |
出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的.在出租车几何学中,点还是形如
的有序实数对,直线还是满足
的所有
组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点
,
,定义它们之间的一种“距离”:
;到两点P.Q“距离”相等的点的轨迹称为线段PQ的“垂直平分线”.已知点
、
、
,请解决以下问题:
(1)求线段
上一点
到原点
的“距离”;
(2)写出线段AB的“垂直平分线”的轨迹方程,并作出大致图像;
(3)定义:若三角形三边的“垂直平分线”交于一点,则该点称为三角形的“外心”.试判断
的“外心”是否存在,如果存在,求出“外心”;如果不存在,说明理由.









(1)求线段




(2)写出线段AB的“垂直平分线”的轨迹方程,并作出大致图像;
(3)定义:若三角形三边的“垂直平分线”交于一点,则该点称为三角形的“外心”.试判断

下列说法正确的个数有( )
①用
刻画回归效果,当
越大时,模型的拟合效果越差;反之,则越好;
②可导函数
在
处取得极值,则
;
③归纳推理是由特殊到一般的推理,而演绎推理是由一般到特殊的推理;
④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”.
①用


②可导函数



③归纳推理是由特殊到一般的推理,而演绎推理是由一般到特殊的推理;
④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”.
A.1个 | B.2个 | C.3个 | D.4个 |