- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,底面为平行四边形ABCD的四棱锥P-ABCD中,E为PC的中点.求证:PA∥平面BD

A.(要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来) |

观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n个等式为____.
明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有
,
,
.据此,可得正项等比数列
中,
( )





A.![]() | B.![]() | C.![]() | D.![]() |
已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数叫做等差数列,这个常数叫做该数列的公差.类比等差数列的定义给出“等和数列”的定义:_____________________________________;已知数列
是等和数列,且
,公和为
,那么
的值为____________.这个数列的前
项和
的计算公式为_____________________________________.






给出下面类比推理(其中
为有理数集,
为实数集,
为复数集):
①“若
,则
”类比推出“
,则
”;
②“若
,则复数
”类比推出“
,则
”;
③“
,则

”类比推出“若
,则
”;
④“若
,则
”类比推出“若
,则
”.
其中类比结论正确的个数为________.



①“若




②“若




③“






④“若




其中类比结论正确的个数为________.