- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 两点分布的均值
- 超几何分布的均值
- + 二项分布的均值
- 均值的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2018年元旦期间,某运动服装专卖店举办了一次有奖促销活动,消费每超过400元均可参加1次抽奖活动,抽奖方案有两种,顾客只能选择其中的一种.
方案一:顾客转动十二等分且质地均匀的圆形转盘(如图),转盘停止转动时指针指向哪个扇形区域,则顾客可直接获得该区域对应面额(单位:元)的现金优惠,且允许顾客转动3次.
方案二:顾客转动十二等分且质地均匀的圆形转盘(如图〕,转盘停止转动时指针若指向阴影部分,则未中奖,若指向白色区域,则顾客可直接获得40元现金,且允许顾客转动3次.

(1)若两位顾客均获得1次抽奖机会,且都选择抽奖方案一,试求这两位顾客均获得180元现金优惠的概率;
(2)若某顾客恰好获得1次抽奖机会.
①试分别计算他选择两种抽奖方案最终获得现金奖励的数学期望;
②从概率的角度比较①中该顾客选择哪一种抽奖方案更合算?
方案一:顾客转动十二等分且质地均匀的圆形转盘(如图),转盘停止转动时指针指向哪个扇形区域,则顾客可直接获得该区域对应面额(单位:元)的现金优惠,且允许顾客转动3次.
方案二:顾客转动十二等分且质地均匀的圆形转盘(如图〕,转盘停止转动时指针若指向阴影部分,则未中奖,若指向白色区域,则顾客可直接获得40元现金,且允许顾客转动3次.

(1)若两位顾客均获得1次抽奖机会,且都选择抽奖方案一,试求这两位顾客均获得180元现金优惠的概率;
(2)若某顾客恰好获得1次抽奖机会.
①试分别计算他选择两种抽奖方案最终获得现金奖励的数学期望;
②从概率的角度比较①中该顾客选择哪一种抽奖方案更合算?
为进一步优化能源消费结构,某市决定在一地处山区的
县推进光伏发电项目.在该县山区居民中随机抽取50户,统计其年用电量得到以下统计表.以样本的频率作为概率.
(I)在该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为
,求
的数学期望和方差;
(II)已知该县某山区自然村有居民300户.若计划在该村安装年发电量为300000度的发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度进行收购.试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元? (同一组中的用电量数据用该组区间的中点值作代表)

用电量(度) | ![]() | ![]() | ![]() | ![]() | ![]() |
户数 | 5 | 15 | 10 | 15 | 5 |
(I)在该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为


(II)已知该县某山区自然村有居民300户.若计划在该村安装年发电量为300000度的发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度进行收购.试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元? (同一组中的用电量数据用该组区间的中点值作代表)
某公司在新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择.
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为
,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖.规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则需进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则不能获得奖金.
方案乙:员工连续三次抽奖,每次中奖率均为
,每次中奖均可获得奖金400元.
(1)求员工选择方案甲进行抽奖所获奖金
(元)的分布列.
(2)试比较某员工选择方案甲与选择方案乙进行抽奖,哪个方案更划算?
(3)已知公司共有100人在活动中选择了方案甲,试估计这些员工活动结束后没有获奖的人数.
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为

方案乙:员工连续三次抽奖,每次中奖率均为

(1)求员工选择方案甲进行抽奖所获奖金

(2)试比较某员工选择方案甲与选择方案乙进行抽奖,哪个方案更划算?
(3)已知公司共有100人在活动中选择了方案甲,试估计这些员工活动结束后没有获奖的人数.
某款汽车坐垫在2017年“双十一”期间的销量共有300件,三种颜色的销量如下表所示:

以上数据的频率为概率,若从卖出的汽车坐垫中随机抽取5件,记其中棕色坐垫的件数为
,则
( )

以上数据的频率为概率,若从卖出的汽车坐垫中随机抽取5件,记其中棕色坐垫的件数为


A.5 | B.3 | C.2 | D.1 |
海水养殖场使用网箱养殖的方法,收获时随机抽取了 100个网箱,测量各箱水产品的产量(单位:
),其频率分布直方图如图:
定义箱产量在
(单位:
)的网箱为“稳产网箱”, 箱产量在区间
之外的网箱为“非稳产网箱”.

(1)从该养殖场(该养殖场中的网箱数量是巨大的)中随机抽取3个网箱.将频率视为概率,设其中稳产网箱的个数为
,求
的分布列与期望
;
(2)从样本中随机抽取3个网箱,设其中稳产网箱的个数为
,试比较
的期望
与
的大小.

定义箱产量在




(1)从该养殖场(该养殖场中的网箱数量是巨大的)中随机抽取3个网箱.将频率视为概率,设其中稳产网箱的个数为



(2)从样本中随机抽取3个网箱,设其中稳产网箱的个数为



