- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 两点分布的均值
- 超几何分布的均值
- + 二项分布的均值
- 均值的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个箱子中装有形状完全相同的5个白球和
个黑球.现从中有放回的摸取4次,每次都是随机摸取一球,设摸得白球个数为
,若
,则
( )




A.1 | B.2 | C.3 | D.4 |
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均在35微克/立方米以下空气质量为一级,在35微克/立方米
75微克/立方米之间空气质量为二级,在75微克/立方米以上空气质量为超标.北方某市环保局从2015年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如下图所示(十位为茎,个位为叶).
(1)15天的数据中任取3天的数据,记
表示其中空气质量达到一级的天数,求
的分布列;
(2)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中大约有多少天的空气质量达到一级.


(1)15天的数据中任取3天的数据,记


(2)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中大约有多少天的空气质量达到一级.
计划在某水库建一座至多安装4台发电机的水电站,过去0年的水文资料显示,水库年入流量
(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不足120的年份有30年,不低于120且不足160的年份有8年,不低于160的年份有2年,将年入流量在以上四段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求在未来3年中,至多1年的年入流量不低于120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量
的限制,并有如下关系:

若某台发电机运行,则该台发电机年利润为500万元;若某台发电机未运行,则该台发电机年亏损1500万元,水电站计划在该水库安装2台或3台发电机,你认为应安装2台还是3台发电机?请说明理由.

(1)求在未来3年中,至多1年的年入流量不低于120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量


若某台发电机运行,则该台发电机年利润为500万元;若某台发电机未运行,则该台发电机年亏损1500万元,水电站计划在该水库安装2台或3台发电机,你认为应安装2台还是3台发电机?请说明理由.





(Ⅰ)在这18个数据中随机抽取3个数据,求其中恰有2个数据为空气质量达到一级的概率;
(Ⅱ)在这18个数据中随机抽取3个数据,用


(Ⅲ)以这18天的

某校高三年级有1000人,某次数学考试不同成绩段的人数
.
(1)求该校此次数学考试平均成绩;
(2)计算得分超过141的人数;
(3)甲同学每次数学考试进入年级前100名的概率是
,若本学期有4次考试,
表示进入前100名的次数,写出
的分布列,并求期望与方差.

(1)求该校此次数学考试平均成绩;
(2)计算得分超过141的人数;
(3)甲同学每次数学考试进入年级前100名的概率是


