- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量的均值
- + 常用分布的均值
- 两点分布的均值
- 超几何分布的均值
- 二项分布的均值
- 均值的实际应用
- 离散型随机变量的方差
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某人从家乘车到单位,途中有
个交通岗亭,假设在
个交通岗亭遇到红灯的事件是相互独立的,且概率都是
,则此人上班途中遇到红灯次数的期望为 




A.![]() | B.![]() | C.![]() | D.![]() |
“五一”假期期间,某餐厅对选择
、
、
三种套餐的顾客进行优惠.对选择
、
套餐的顾客都优惠10元,对选择
套餐的顾客优惠20元.根据以往“五一”假期期间100名顾客对选择
、
、
三种套餐的情况得到下表:
将频率视为概率.
(I)若有甲、乙、丙三位顾客选择某种套餐,求三位顾客选择的套餐至少有两样不同的概率;
(II)若用随机变量
表示两位顾客所得优惠金额的综合,求
的分布列和期望.









选择套餐种类 | ![]() | ![]() | ![]() |
选择每种套餐的人数 | 50 | 25 | 25 |
将频率视为概率.
(I)若有甲、乙、丙三位顾客选择某种套餐,求三位顾客选择的套餐至少有两样不同的概率;
(II)若用随机变量


某人经营 一个抽奖游戏,顾客花费
元钱可购买一次游戏机会,每次游戏,顾客从标有
的
个红球,和标有
的
个黑球共
个球中随机摸出
个球,并根据摸出的球的情况进行兑奖.经营者奖顾客摸出的球情况分成以下类别:A:两球的颜色相同且号码相邻;B: 两球的颜色相同,但号码不相邻;
C: 两球的颜色不同,但号码相邻;D: 两球的号码相同;E: 其它情况.经营者打算将以上五种类别中最不容易发生的一种类别对应一等奖,最容易发生的一种类别对应二等奖,其他类别答应三等奖.
(1)一、二等奖分别对应哪一种类别(用字母表示即可);
(2)若一、二、三等奖分别获得价值
元、
元、
元的奖品,某天所有顾客参加游戏的次数共计
次,试估计经营者这一天的盈利.







C: 两球的颜色不同,但号码相邻;D: 两球的号码相同;E: 其它情况.经营者打算将以上五种类别中最不容易发生的一种类别对应一等奖,最容易发生的一种类别对应二等奖,其他类别答应三等奖.
(1)一、二等奖分别对应哪一种类别(用字母表示即可);
(2)若一、二、三等奖分别获得价值




团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在
市开展了团购业务,
市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.
(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;
(2)从所调查的50家商家中任取两家,用
表示这两家商家参加的团购网站数量之差的绝对值,求随机变量
的分布列和数学期望;
(3)将频率视为概率,现从
市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为
,试求事件“
”的概率.


(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;
(2)从所调查的50家商家中任取两家,用


(3)将频率视为概率,现从




为了响应国家发展足球的战略,某校在秋季运动会中,安排了足球射门比赛.现有10名同学参加足球射门比赛,已知每名同学踢进的概率均为
,每名同学有2次射门机会,且各同学射门之间没有影响.现规定:踢进两个得10分,踢进一个得5分,一个未进得0分,记
为10个同学的得分总和,则
的数学期望为( )



A.30 | B.40 | C.60 | D.80 |
设服从二项分布B(n,p)的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n、p的值为
A.n=4,p=0.6 | B.n=6,p=0.4 |
C.n=8,p=0.3 | D.n=24,p=0.1 |