- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2个人去参加甲游戏的概率;
(2) 用X表示这4个人中去参加乙游戏的人数,求随机变量X的分布列与数学期望E(X).
(1)求这4个人中恰有2个人去参加甲游戏的概率;
(2) 用X表示这4个人中去参加乙游戏的人数,求随机变量X的分布列与数学期望E(X).
某学校在学校内招募了
名男志愿者和
名女志愿者.将这
名志愿者的身高编成如右茎叶图(单位:
),若身高在
以上(包括
)定义为“高个子”,身高在
以下(不包括
)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.
(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取
人,再从这
人中选
人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中选
名志愿者,用
表示所选志愿者中能担任“礼仪小姐”的人数,试写出
的分布列,并求
的数学期望.








(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取



(Ⅱ)若从所有“高个子”中选





已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为
A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ与η,且ξ,η的分布列为

(1)求a,b的值.
(2)计算ξ,η的均值与方差,并以此分析甲、乙的技术状况.


(1)求a,b的值.
(2)计算ξ,η的均值与方差,并以此分析甲、乙的技术状况.
甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X的均值EX=_____ .
某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
这里,两株作物“相近”是指它们之间的直线距离不超过1米.

(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(II)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.
X | 1 | 2 | 3 | 4 |
Y | 51 | 48 | 45 | 42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米.

(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(II)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.
为了积极支持雄安新区建设,某投资公司计划明年投资1000万元给雄安新区甲、乙两家科技企业,以支持其创新研发计划,经有关部门测算,若不受中美贸易战影响的话,每投入100万元资金,在甲企业可获利150万元,若遭受贸易战影响的话,则将损失50万元;同样的情况,在乙企业可获利100万元,否则将损失20万元,假设甲、乙两企业遭受贸易战影响的概率分别为0.6和0.5.
(1)若在甲、乙两企业分别投资500万元,求获利1250万元的概率;
(2)若在两企业的投资额相差不超过300万元,求该投资公司明年获利约在什么范围内?
(1)若在甲、乙两企业分别投资500万元,求获利1250万元的概率;
(2)若在两企业的投资额相差不超过300万元,求该投资公司明年获利约在什么范围内?
某日A,B,C三个城市18个销售点的小麦价格如下表:
(1)甲以B市5个销售点小麦价格的中位数作为购买价格,乙从C市4个销售点中随机挑选2个了解小麦价格.记乙挑选的2个销售点中小麦价格比甲的购买价格高的个数为
,求
的分布列及数学期望;
(2)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A,B,C三个城市按照小麦价格差异性从大到小进行排序(只写出结果).
销售点序号 | 所属城市 | 小麦价格(元/吨) | 销售点序号 | 所属城市 | 小麦价格(元/吨) |
1 | A | 2420 | 10 | B | 2500 |
2 | C | 2580 | 11 | A | 2460 |
3 | C | 2470 | 12 | A | 2460 |
4 | C | 2540 | 13 | A | 2500 |
5 | A | 2430 | 14 | B | 2500 |
6 | C | 2400 | 15 | B | 2450 |
7 | A | 2440 | 16 | B | 2460 |
8 | B | 2500 | 17 | A | 2460 |
9 | A | 2440 | 18 | A | 2540 |
(1)甲以B市5个销售点小麦价格的中位数作为购买价格,乙从C市4个销售点中随机挑选2个了解小麦价格.记乙挑选的2个销售点中小麦价格比甲的购买价格高的个数为


(2)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A,B,C三个城市按照小麦价格差异性从大到小进行排序(只写出结果).
在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分统计结果如下表所示.
(1)由频数分布表可以大致认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求
;
(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案::
(ⅰ)得分不低于
的可以获赠2次随机话费,得分低于
的可以获赠1次随机话费;
(ⅱ)每次获赠送的随机话费和对应的概率为:
现有市民甲要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列与数学期望.
附:参考数据与公式
,若
,则
①
;
②
;
③
.
组别 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以大致认为,此次问卷调查的得分




(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案::
(ⅰ)得分不低于


(ⅱ)每次获赠送的随机话费和对应的概率为:
赠送的随机话费(单元:元) | 20 | 40 |
概率 | 0.75 | 0.25 |
现有市民甲要参加此次问卷调查,记


附:参考数据与公式


①

②

③
