- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为
,当
时,产品为一等品;当
时,产品为二等品;当
时,产品为三等品.现有甲、乙两条生产线,各生产了100件该产品,测量每件产品的质量指标值,得到下面的试验结果.(以下均视频率为概率)
甲生产线生产的产品的质量指标值的频数分布表:
乙生产线产生的产品的质量指标值的频数分布表:
(1)若从乙生产线生产的产品中有放回地随机抽取3件,求至少抽到2件三等品的概率;
(2)若该产品的利润率
与质量指标值
满足关系:
,其中
,从长期来看,哪条生产线生产的产品的平均利润率更高?请说明理由.




甲生产线生产的产品的质量指标值的频数分布表:
指标值分组 | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 30 | 40 | 20 |
乙生产线产生的产品的质量指标值的频数分布表:
指标值分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 15 | 25 | 30 | 20 |
(1)若从乙生产线生产的产品中有放回地随机抽取3件,求至少抽到2件三等品的概率;
(2)若该产品的利润率




某鲜奶店每天购进30瓶鲜牛奶,且当天的利润y(单位:元)关于当天需求量n(单位:瓶,n∈N)的函数解析式
(n∈N).鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶)绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5):

(1)求这100天的日利润(单位:元)的平均数;
(2)以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于100元的概率.


(1)求这100天的日利润(单位:元)的平均数;
(2)以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于100元的概率.
某理财公司有两种理财产品
和
,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品
产品
(其中
)
(1)已知甲、乙两人分别选择了产品
和产品
进行投资,如果一年后他们中至少有一人获利的概率大于0.7,求
的取值范围;
(2)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品
和产品
之中选其一,应选用哪种产品?


产品

投资结果 | 获利20% | 获利10% | 不赔不赚 | 亏损10% |
概率 | 0.2 | 0.3 | 0.2 | 0.3 |
产品


投资结果 | 获利30% | 不赔不赚 | 亏损20% |
概率 | ![]() | 0.1 | ![]() |
(1)已知甲、乙两人分别选择了产品



(2)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品


甲、乙二人进行一次围棋比赛,每局胜者得1分,负者得0分,约定一方比另一方多3分或满9局时比赛结束,并规定:只有一方比另一方多三分才算赢,其它情况算平局,假设在每局比赛中,甲获胜的概率为
,乙获胜的概率为
,各局比赛结果相互独立,已知前3局中,甲胜2局,乙胜1局.
(1) 求甲获得这次比赛胜利的概率;
(2)设
表示从第4局开始到比赛结束所进行的局数,求
得分布列及数学期望.


(1) 求甲获得这次比赛胜利的概率;
(2)设


在某次活动中,有5名幸运之星.这5名幸运之星可获得
、
两种奖品中的一种,并规定:每个人通过抛掷一枚质地均为的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得
奖品,抛掷点数不小于3的获得
奖品.
(1)求这5名幸运之星中获得
奖品的人数大于获得
奖品的人数的概率;
(2)设
、
分别为获得
、
两种奖品的人数,并记
,求随机变量
的分布列及数学期望.




(1)求这5名幸运之星中获得


(2)设






炎炎夏季,水蜜桃成为备受大家欢迎的一种水果,某果园的水蜜桃质量分布如图所示.
(Ⅰ)求m的值;
(Ⅱ)以频率估计概率,若从该果园中随机采摘5个水蜜桃,记质量在300克以上(含300克)的个数为X,求X的分布列及数学期望;
(Ⅲ)经市场调查,该种水蜜桃在过去50天的销售量(单位:千克)和价格(单位:元/千克)均为销售时间t(天)的函数,且销售量近似地满足f(t)=﹣3t+300(1≤t≤50,t∈N),前30天价格为g(t)=
+20(1≤t≤30,t∈N),后20天价格为g(t)=30(31≤t≤50,t∈N),求日销售额S的最大值.
(Ⅰ)求m的值;
(Ⅱ)以频率估计概率,若从该果园中随机采摘5个水蜜桃,记质量在300克以上(含300克)的个数为X,求X的分布列及数学期望;
(Ⅲ)经市场调查,该种水蜜桃在过去50天的销售量(单位:千克)和价格(单位:元/千克)均为销售时间t(天)的函数,且销售量近似地满足f(t)=﹣3t+300(1≤t≤50,t∈N),前30天价格为g(t)=


口袋中装有大小质地都相同、编号为1,2,3,4,5,6的球各一只
现从中一次性随机地取出两个球,设取出的两球中较小的编号为X,则随机变量X的数学期望是______ .
