节能灯的质量通过其正常使用时间来衡量,使用时间越长,表明质量越好,且使用时间大于或等于6千小时的产品为优质品.现用A,B两种不同型号的节能灯做试验,各随机抽取部分产品作为样本,得到试验结果的频率分布直方图如图所示.

以上述试验结果中使用时间落入各组的频率作为相应的概率.
(1)现从大量的A,B两种型号节能灯中各随机抽取两件产品,求恰有两件是优质品的概率;
(2)已知A型节能灯的生产厂家对使用时间小于6千小时的节能灯实行“三包”.通过多年统计发现,A型节能灯每件产品的利润y(单位:元)与其使用时间t(单位:千小时)的关系如下表:
使用时间t(单位:千小时)
t<4
4≤t<6
t≥6
每件产品的利润y(单位:元)
-10
10
20
 
若从大量的A型节能灯中随机抽取两件,其利润之和记为X(单位:元),求X的分布列及数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
根据某水文观测点的历史统计数据,得到某河流水位(单位:米)的频率分布直方图如下.将河流水位在各段内的频率作为相应段的概率,并假设每年河流水位变化互不影响.

(1)求未来4年中,至少有2年该河流水位的概率(结果用分数表示).
(2)已知该河流对沿河工厂的影响如下:当时,不会造成影响;当时,损失50000元;当时,损失300000元.为减少损失,工厂制定了三种应对方案.
方案一:不采取措施;
方案二:防御不超过30米的水位,需要工程费用8000元;
方案三:防御34米的最高水位,需要工程费用20000元.
试问哪种方案更好,请说明理由.
当前题号:2 | 题型:解答题 | 难度:0.99
某竞赛的题库系统有60%的自然科学类题目,40%的文化生活类题目(假设题库中的题目总数非常大),参赛者需从题库中抽取3个题目作答,有两种抽取方法:方法一是直接从题库中随机抽取3个题目;方法二是先在题库中按照题目类型用分层抽样的方法抽取10个题目作为样本,再从这10个题目中任意抽取3个题目.
(1)两种方法抽取的3个题目中,恰好有1个自然科学类题目和2个文化生活类题目的概率是否相同?若相同,说明理由;若不同,分别计算出两种抽取方法对应的概率.
(2)已知某参赛者抽取的3个题目恰好有1个自然科学类题目和2个文化生活类题目,且该参赛者答对自然科学类题目的概率为,答对文化生活类题目的概率为.设该参赛者答对的题目数为X,求X的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
“工资条里显红利,个税新政人民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.2019年1月1日实施的个税新政主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.
新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:
 
旧个税税率表(个税起征点3500元)
新个税税率表(个税起征点5000元)
缴税级数
每月应纳税所得额(含税)=收入-个税起征点
税率(%)
每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除
税率(%)
1
不超过1500元部分
3
不超过3000元部分
3
2
超过1500元至4500元部分
10
超过3000元至12000元部分
10
3
超过4500元至9000元的部分
20
超过12000元至25000元的部分
20
4
超过9000元至35000元的部分
25
超过25000元至35000元的部分
25
5
超过35000元至55000元部分
30
超过35000元至55000元部分
30
···
···
···
···
···
 
随机抽取某市1000名同一收入层级的从业者的相关资料,经统计分析,预估他们2019年的人均月收入24000元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000元/月,子女教育每孩1000元/月,赡养老人2000元/月等.
假设该市该收入层级的从业者都独自享受专项附加扣除,将预估的该市该收入层级的从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:
(1)设该市该收入层级的从业者2019年月缴个税为元,求的分布列和期望;
(2)根据新旧个税方案,估计从2019年1月开始,经过多少个月,该市该收入层级的从业者各月少缴交的个税之和就超过2019年的月收入?
当前题号:4 | 题型:解答题 | 难度:0.99
甲、乙两人进行围棋比赛,约定先连胜2局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.记为比赛决出胜负时的总局数,则的数学期望是(   )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
某同学解答两道试题,他能够解出第一道题的概率为0.8,能够解出第二道题的概率为0.6,两道试题能够解答与否相互独立,记该同学解出题目的个数为随机变量X,则X的数学期望______.
当前题号:6 | 题型:填空题 | 难度:0.99
某技术公司新开发了两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:
测试指标





产品
8
12
40
32
8
产品
7
18
40
29
6
 
(1)试分别估计产品,产品为正品的概率;
(2)生产一件产品,若是正品可盈利80元,次品则亏损10元;生产一件产品,若是正品可盈利100元,次品则亏损20元,在(1)的前提下,记为生产1件产品和1件产品所得的总利润,求随机变量的分列和数学期望。
当前题号:7 | 题型:解答题 | 难度:0.99
一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2,则的最小值为( )
A.B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
已知某一随机变量的分布列如下表所示,若,则的值为(   )


7
9


0.1
0.4
 
A.4B.5C.6D.7
当前题号:9 | 题型:单选题 | 难度:0.99
某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布(满分为100分),已知,现从该市高三学生随机抽取三位同学.
(1)求抽到的三位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]各有一位同学的概率;
(2)记抽到的三位同学该次体能测试成绩在区间[75,85]的人数为,求随机变量的分布列和数学期望
当前题号:10 | 题型:解答题 | 难度:0.99