刷题首页
题库
高中数学
题干
甲、乙二人进行一次围棋比赛,每局胜者得1分,负者得0分,约定一方比另一方多3分或满9局时比赛结束,并规定:只有一方比另一方多三分才算赢,其它情况算平局,假设在每局比赛中,甲获胜的概率为
,乙获胜的概率为
,各局比赛结果相互独立,已知前3局中,甲胜2局,乙胜1局.
(1) 求甲获得这次比赛胜利的概率;
(2)设
表示从第4局开始到比赛结束所进行的局数,求
得分布列及数学期望.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-17 05:38:36
答案(点此获取答案解析)
同类题1
某电视台的夏日水上闯关节目中的前四关的过关率分别为
,
,
,
,只有通过前一关才能进入下一关,其中,第三关有两次闯关机会,且通过每关相互独立.一选手参加该节目,则该选手能进入第四关的概率为()
A.
B.
C.
D.
同类题2
甲袋中装有大小相同的红球1个,白球2个;乙袋中装有与甲袋中相同大小的红球2个,白球3个.先从甲袋中取出1个球投入乙袋中,然后从乙袋中取出2个小球.
(Ⅰ)求从乙袋中取出的2个小球中仅有1个红球的概率;
(Ⅱ)记从乙袋中取出的2个小球中白球个数为随机变量
,求
的分布列和数学期望.
同类题3
袋中有大小相同的3个红球和2个白球,现从袋中每次取出一个球,若取出的是红球,则放回袋中,继续取一个球,若取出的是白球,则不放回,再从袋中取一球,直到取出两个白球或者取球5次,则停止取球,设取球次数为
,
(1)求取球3次则停止取球的概率;
(2)求随机变量
的分布列.
同类题4
一袋中装有5个白球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现2次停止,用
X
表示取球的次数,则
___________
同类题5
三个元件
正常工作的概率分别为
,
,
,将
两个元件并联后再和
串联接入电路,如图所示,则电路不发生故障的概率为_________.
相关知识点
计数原理与概率统计
随机变量及其分布
二项分布及其应用
事件的独立性
独立事件的乘法公式
求离散型随机变量的均值