- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
王先生家住
小区,他工作在
科技园区,从家开车到公司上班路上有
两条路线(如图),
路线上有
三个路口,各路口遇到红灯的概率均为
;
路线上有
两个路口,各路口遇到红灯的概率依次为
,若走
路线,王先生最多遇到1次红灯的概率为__________;若走
路线,王先生遇到红灯次数
的数学期望为__________.













在某校组织的一次篮球定点投篮训练中,规定每人最多投3次:在
处每投进一球得3分,在
处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在
处的命中率
为
,在
处的命中率为
,该同学选择先在
处投一球,以后都在
处投,用
表示该同学投篮训练结束后所得的总分,其分布列为:
(1)求
的值;
(2)求随机变量
的数学期望
.










![]() | 0 | 2 | 3 | 4 | 5 |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求

(2)求随机变量


某校选择高一年级三个班进行为期二年的教学改革试验,为此需要为这三个班各购买某种设备1台.经市场调研,该种设备有甲乙两型产品,甲型价格是3000元/台,乙型价格是2000元/台,这两型产品使用寿命都至少是一年,甲型产品使用寿命低于2年的概率是
,乙型产品使用寿命低于2年的概率是
.若某班设备在试验期内使用寿命到期,则需要再购买乙型产品更换.
(1)若该校购买甲型2台,乙型1台,求试验期内购买该种设备总费用恰好是10000元的概率;
(2)该校有购买该种设备的两种方案,
方案:购买甲型3台;
方案:购买甲型2台乙型1台.若根据2年试验期内购买该设备总费用的期望值决定选择哪种方案,你认为该校应该选择哪种方案?


(1)若该校购买甲型2台,乙型1台,求试验期内购买该种设备总费用恰好是10000元的概率;
(2)该校有购买该种设备的两种方案,


在英国的某一娱乐节目中,有一种过关游戏,规则如下:转动图中转盘(一个圆盘四等分,在每块区域内分别标有数字1,2,3,4),由转盘停止时指针所指数字决定是否过关.在闯
关时,转
次,当次转得数字之和大于
时,算闯关成功,并继续闯关,否则停止闯关,闯过第一关能获得10欧元,之后每多闯一关,奖金翻倍,假设每个参与者都会持续闯关到不能过关为止,并且转盘每次转出结果相互独立.
(1)求某人参加一次游戏,恰好获得10欧元的概率;
(2)某人参加一次游戏,获得奖金
欧元,求
的概率分布和数学期望.



(1)求某人参加一次游戏,恰好获得10欧元的概率;
(2)某人参加一次游戏,获得奖金



甲、乙两人想参加《中国诗词大会》比赛,筹办方要从10首诗司中分别抽出3首让甲、乙背诵,规定至少背出其中2首才算合格; 在这10首诗词中,甲只能背出其中的7首,乙只能背出其中的8首
(1)求抽到甲能背诵的诗词的数量
的分布列及数学期望;
(2)求甲、乙两人中至少且有一人能合格的概率.
(1)求抽到甲能背诵的诗词的数量

(2)求甲、乙两人中至少且有一人能合格的概率.
某建材公司在
,
两地各有一家工厂,它们生产的建材由公司直接运往
地.由于土路交通运输不便,为了减少运费,该公司预备投资修建一条从
地或
地直达
地的公路;若选择从某地修建公路,则另外一地生产的建材可先运输至该地再运至
以节约费用.已知
,
之间为土路,土路运费为每吨千米20元,公路的运费减半,
,
,
三地距离如图所示.为了制定修路计划,公司统计了最近10天两个工厂每天的建材产量,得到下面的柱形图,以两个工厂在最近10天日产量的频率代替日产量的概率.
(1)求“
,
两地工厂某天的总日产量为20吨”的概率;
(2)以修路后每天总的运费的期望为依据,判断从
,
哪一地修路更加划算.












(1)求“


(2)以修路后每天总的运费的期望为依据,判断从



某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每台新机随机购买第一盒墨150元,优惠0元;再每多买一盒墨都要在原优惠基础上多优惠一元,即第一盒墨没有优惠,第二盒墨优惠一元,第三盒墨优惠2元,……,依此类推,每台新机最多可随新机购买25盒墨.平时购买墨盒按零售每盒200元.
以这十台打印机消耗墨盒数的频率代替一台打印机消耗墨盒数发生的概率,记ξ表示两台打印机5年消耗的墨盒数.
(1)求ξ的分布列;
(2)若在购买两台新机时,每台机随机购买23盒墨,求这两台打印机正常使用五年在消耗墨盒上所需费用的期望.
公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如下表:
消耗墨盒数 | 22 | 23 | 24 | 25 |
打印机台数 | 1 | 4 | 4 | 1 |
以这十台打印机消耗墨盒数的频率代替一台打印机消耗墨盒数发生的概率,记ξ表示两台打印机5年消耗的墨盒数.
(1)求ξ的分布列;
(2)若在购买两台新机时,每台机随机购买23盒墨,求这两台打印机正常使用五年在消耗墨盒上所需费用的期望.
某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的个人单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.若一个运动员出线记
分,未出线记
分.假设甲、乙、丙出线的概率分别为
,他们出线与未出线是相互独立的.
(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;
(2)记在这次选拔赛中,甲、乙、丙三名运动员所得分之和为随机变量
,求随机变量
的分布列和数学期望
.



(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;
(2)记在这次选拔赛中,甲、乙、丙三名运动员所得分之和为随机变量



现有四枚不同的金属纪念币
,投掷时,
两枚正面向上的概率均为
,另两枚
正面向上的概率均为
,这四枚纪念币同时投掷一次,设
表示出现正面向上的枚数.
(1)若
出现一正一反与
出现两正的概率相等,求
的值;
(2)求
的分布列及数学期望(用字母
表示);
(3)若有两枚纪念币出现正面向上的概率最大,求实数
的取值范围.






(1)若



(2)求


(3)若有两枚纪念币出现正面向上的概率最大,求实数
