在某次数学考试中,抽查了1000名学生的成绩,得到频率分布直方图如图所示,规定85分及其以上为优秀.

(1)下表是这次抽查成绩的频数分布表,试求正整数的值;
区间
[75,80)
[80,85)
[85,90)
[90,95)
[95,100]
人数
50
a
350
300
b
 
(2)现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求抽取成绩为优秀的学生人数;
(3)在根据(2)抽取的40名学生中,要随机选取2名学生参加座谈会,记其中成绩为优秀的人数为X,求X的分布列与数学期望(即均值).
当前题号:1 | 题型:解答题 | 难度:0.99
经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如右图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内经销该农产品的数量,T表示利润.

(Ⅰ)将T表示为x的函数
(Ⅱ)根据直方图估计利润T不少于57000元的概率;
(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x,则取x=105,且x=105的概率等于需求量落入[100,110,求T的数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
某公司生产一种新产品,从产品中抽取100件作为样本,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图.

(1)用每组区间的中点值代表该组数据,估算这批产品的样本平均数和样本方差的
(2)从指标值落在的产品中随机抽取2件做进一步检测,设抽取的产品的指标在的件数为,求的分布列和数学期望;
(3)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布近似为样本平均值近似为样本方差,若产品质量指标值大于236.6,则产品不合格,该厂生产10万件该产品,求这批产品不合格的件数.
参考数据:.
当前题号:3 | 题型:解答题 | 难度:0.99
某市一所高中为备战即将举行的全市羽毛球比赛,学校决定组织甲、乙两队进行羽毛球对抗赛实战训练.每队四名运动员,并统计了以往多次比赛成绩,按由高到低进行排序分别为第一名、第二名、第三名、第四名.比赛规则为甲、乙两队同名次的运动员进行对抗,每场对抗赛都互不影响,当甲、乙两队的四名队员都进行一次对抗赛后称为一个轮次.按以往多次比赛统计的结果,甲、乙两队同名次进行对抗时,甲队队员获胜的概率分别为.
(1)进行一个轮次对抗赛后一共有多少种对抗结果?
(2)计分规则为每次对抗赛获胜一方所在的队得1分,失败一方所在的队得0分,设进行一个轮次对抗赛后甲队所得分数为X,求X的分布列及数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.

(1)用样本估计总体,以频率作为概率,若在两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;
(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.
 
优质花苗
非优质花苗
合计
甲培育法
20
 
 
乙培育法
 
10
 
合计
 
 
 
 
附:下面的临界值表仅供参考.

0.050
0.010
0.001

3.841
6.635
10.828
 
(参考公式:,其中
当前题号:5 | 题型:解答题 | 难度:0.99
“大湖名城,创新高地”的合肥,历史文化积淀深厚,民俗和人文景观丰富,科教资源众多,自然风光秀美,成为中小学生“研学游”的理想之地.为了将来更好地推进“研学游”项目,某旅游学校一位实习生,在某旅行社实习期间,把“研学游”项目分为科技体验游、民俗人文游、自然风光游三种类型,并在前几年该旅行社接待的全省高一学生“研学游”学校中,随机抽取了100所学校,统计如下:
研学游类型
科技体验游
民俗人文游
自然风光游
学校数
40
40
20
 
该实习生在明年省内有意向组织高一“研学游”学校中,随机抽取了3所学校,并以统计的频率代替学校选择研学游类型的概率(假设每所学校在选择研学游类型时仅选择其中一类,且不受其他学校选择结果的影响):
(1)若这3所学校选择的研学游类型是“科技体验游”和“自然风光游”,求这两种类型都有学校选择的概率;
(2)设这3所学校中选择“科技体验游”学校数为随机变量X,求X的分布列与数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,;当两条棱异面时,;当两条棱平行时,的值为两条棱之间的距离,则数学期望=________.
当前题号:7 | 题型:填空题 | 难度:0.99
某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过对本地养鱼场年利润率的调研,其结果是:年利润亏损10%的概率为0.2,年利润获利30%的概率为0.4,年利润获利50%的概率为0.4,对远洋捕捞队的调研结果是:年利润获利为60%的概率为0.7,持平的概率为0.2,年利润亏损20%的可能性为0.1. 为确保本地的鲜鱼供应,市政府要求该公司对远洋捕捞队的投资不得高于本地养鱼场的投资的2倍.根据调研数据,该公司如何分配投资金额,明年两个项目的利润之和最大值为_________千万.
当前题号:8 | 题型:填空题 | 难度:0.99
(国际电工委员会)调査显示,小型风力发电项目投资较少,且开发前景广阔,但受风力自然资源影响,项目投资存在一定风险,根据测算风能风区分类标准如下:
风能分类
一类风区
二类风区
平均风速


 
假设投资项目的资金为万元,投资项目的资金为万元,调研结果是:未来一年内,位于一类风区的项目获利的可能性为,亏损的可能性为;位于二类风区的项目获利的可能性为,亏损的可能性是,不赔不赚的可能性是.
(1)记投资项目的利润分别为,试写出随机变量的分布列和期望).
(2)某公司计划用不超过100万元的资金投资于项目,且公司要求对项目的投资不得低于项目,根据(1)的条件和市场调研,试估计一年后两个项目的平均利润之和的最大值.
当前题号:9 | 题型:解答题 | 难度:0.99
现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p(0<p<1),设乙项目产品价格在一年内进行两次独立的调整.记乙项目产品价格在一年内的下降次数为X,对乙项目每投资10万元,X取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量X1X2分别表示对甲、乙两项目各投资10万元一年后的利润.
(1)求X1X2的概率分布和均值E(X1),E(X2);
(2)当E(X1)<E(X2)时,求p的取值范围.
当前题号:10 | 题型:解答题 | 难度:0.99