随着科技的发展,网络已逐逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或着第二天就能送到,所以网购是非常方便的购物方式,某公司组织统计了近五年来该公司网购的人数(单位:人)与时间(单位:年)的数据,列表如下:

1
2
3
4
5

24
27
41
64
79
 
(1)依据表中给出的数据,是否可用线性回归模型拟合的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性线性回归模型拟合)
附:相关系数公式,参考数据.
(2)某网购专营店为吸引顾客,特推出两种促销方案.
方案一:毎满600元可减100元;
方案二:金额超过600元可抽奖三次,每次中奖的概率都为都为,且毎次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.
①两位顾客都购买了1050元的产品,求至少有一名顾客选择方案二比选择方案一更优惠的概率.
②如果你打算购买1000元的产品,请从实际付款金额的数学期望的角度分折应该选择哪种优惠方案.
当前题号:1 | 题型:解答题 | 难度:0.99
某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试.在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为;(Ⅰ)求该小组中女生的人数;(Ⅱ)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为;现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量,求的分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
设离散型随机变量的分布列为

0
1
2
3
4


0.4
0.1
0.2
0.2
 
若离散型随机变量满足,则下列结果正确的有()
A.B.
C.D.
当前题号:3 | 题型:多选题 | 难度:0.99
某超市国庆大酬宾,购物满100元可参加一次游戏抽奖活动,游戏抽奖规则如下:顾客将一个半径适当的小球放入如图所示的容器正上方的入口处,小球自由落下过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,落入A袋得奖金4元,落入B袋得奖金8元,已知小球每次遇到黑色障碍物时,向左向右下落的概率都为.已知李女士当天在该超市购物消费128元,按照活动要求,李女士的活动奖金期望值为_____元.
当前题号:4 | 题型:填空题 | 难度:0.99
从4名男生和2名女生中任选3人参加演讲比赛,用表示所选3人中女生的人数,则为(  )
A.0B.1C.2D.3
当前题号:5 | 题型:单选题 | 难度:0.99
2019年某饮料公司计划从两款新配方饮料中选择一款进行新品推介,现对这两款饮料进行市场调查,让接受调查的受访者同时饮用这两种饮料,并分别对两款饮料进行评分,现对接受调查的100万名受访者的评分进行整理得到如下统计图.

从对以往调查数据分析可以得出如下结论:评分在的受访者中有会购买,评分在的受访者中有会购买,评分在的受访者中有会购买.
(Ⅰ)在受访的100万人中,求对款饮料评分在60分以下的人数(单位:万人);
(Ⅱ)现从受访者中随机抽取1人进行调查,试估计该受访者购买款饮料的可能性高于购买款饮料的可能性的概率;
(Ⅲ)如果你是决策者,新品推介你会主推哪一款饮料,并说明你的理由.
当前题号:6 | 题型:解答题 | 难度:0.99
口袋中有个形状和大小完全相同的小球,编号分别为,从中任取个球,以表示取出球的最大号码,则=(  )
A.B.C.D.
当前题号:7 | 题型:单选题 | 难度:0.99

为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求
①顾客所获的奖励额为60元的概率
②顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
已知集合A={1,2,3,4}和集合B={1,2,3,…,n},其中n≥5,.从集合A中任取三个不同的元素,其中最小的元素用S表示;从集合B中任取三个不同的元素,其中最大的元素用T表示.记XTS.
(1)当n=5时,求随机变量X的概率分布和数学期望
(2)求
当前题号:9 | 题型:解答题 | 难度:0.99
《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:
 
喜欢《最强大脑》
不喜欢《最强大脑》
合计
男生
 
15
 
女生
15
 
 
合计
 
 
 
 
已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4
(I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
(II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
参考公式:
参考数据:.
当前题号:10 | 题型:解答题 | 难度:0.99