口袋中有个形状和大小完全相同的小球,编号分别为,从中任取个球,以表示取出球的最大号码,则=(  )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发50个红包,每个红包金额为元,.已知在每轮游戏中所产生的50个红包金额的频率分布直方图如图所示.

(1)求的值,并根据频率分布直方图,估计红包金额的众数;
(2)以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在的红包个数为,求的分布列和期望.
当前题号:2 | 题型:解答题 | 难度:0.99
每年春晚都是万众瞩目的时刻,这些节目体现的文化内涵、历史背景等反映了社会的进步.国家的富强,人民生活水平的提高等.某学校高三年级主任开学初为了解学生在看春晚后对节目体现的文化内涵、历史背景等是否会在今年的高考题中体现进行过思考,特地随机抽取100名高三学生(其中文科学生50,理科学生50名),进行了调查.统计数据如表所示(不完整):
 
“思考过”
“没有思考过”
总计
文科学生
40
10
 
理科学生
30
 
 
总计
 
 
100
 
(1)补充完整所给表格,并根据表格数据计算是否有的把握认为看春晚后会思考节目体现的文化内涵、历史背景等与文理科学生有关;
(2)①现从上表的”思考过”的文理科学生中按分层抽样选出7人.再从这7人中随机抽取4人,记这4人中“文科学生”的人数为,试求的分布列与数学期望;
②现设计一份试卷(题目知识点来自春晚相关知识整合与变化),假设“思考过”的学生及格率为,“没有思考过”的学生的及格率为.现从“思考过”与“没有思考过”的学生中分别随机抽取一名学生进行测试,求两人至少有一个及格的概率.
附参考公式:,其中.
参考数据:

0.050
0.010
0.001

3.841
6.635
10.828
 
当前题号:3 | 题型:解答题 | 难度:0.99
某校举行运动会,其中三级跳远的成绩在8.0米 (四舍五入,精确到0.1米) 以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30 ,第6小组的频数是7 .

(Ⅰ)求进入决赛的人数;
(Ⅱ)若从该校学生(人数很多)中随机抽取两名,记表示两人中进入决赛的人数,求的分布列及数学期望;
(Ⅲ) 经过多次测试后发现,甲成绩均匀分布在8~10米之间,乙成绩均匀分布在9.5~10.5米之间,现甲,乙各跳一次,求甲比乙远的概率.
当前题号:4 | 题型:解答题 | 难度:0.99
已知随机变量的分布列如下:








 








 
成等差数列,则下列结论一定成立的是(   )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:
得分







频数
25
150
200
250
225
100
50
 
(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求
(2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
②每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元)
20
40
概率


 
现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:①
②若,则.
当前题号:6 | 题型:解答题 | 难度:0.99
X为随机变量,XB ,若随机变量X的数学期望E(X)=2,则P(X=2)等于________.
当前题号:7 | 题型:填空题 | 难度:0.99
设整数m是从不等式x2-2x-8≤0的整数解的集合S中随机抽取的一个元素,记随机变量ξm2,则ξ的数学期望E(ξ)=________.
当前题号:8 | 题型:填空题 | 难度:0.99
一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,倍的奖励(),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为元.
(1)求概率的值;
(2)为使收益的数学期望不小于0元,求的最小值.
(注:概率学源于赌博,请自觉远离不正当的游戏!)
当前题号:9 | 题型:解答题 | 难度:0.99