某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)

30
25

10
结算时间(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.
(注:将频率视为概率)
当前题号:1 | 题型:解答题 | 难度:0.99
设非零常数是等差数列的公差,随机变量等可能地取值,则方差(  )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
某公司每个工作日由位于市区的总公司向位于郊区的分公司开一个来回的班车(每年按200个工作日计算),现有两种使用班车的方案,方案一是购买一辆大巴,需花费90万元,报废期为10年,车辆平均每年的各种费用合计5万元,司机年工资6万元,司机每天请假的概率为0.1(每年请假时间不超过15天不扣工资,超过15天每天100元),若司机请假则需从公交公司雇佣司机,每天支付300元工资.方案二是租用公交公司的车辆(含司机),根据调研每年12个月的车辆需求指数如直方图所示,其中当某月车辆需求指数在时,月租金为万元.

(1)若购买大巴,设司机每年请假天数为,求公司因司机请假而增加的花费(元)及使用班车年平均花费(万元)的数学期望.
(2)试用调研数据,给出公司使用班车的建议,使得年平均花费最少.
当前题号:3 | 题型:解答题 | 难度:0.99
某同学在上学路上要经过三个带有红绿灯的路口.已知他在三个路口遇到红灯的概率依次是,遇到红灯时停留的时间依次是秒、秒、秒,且在各路口是否遇到红灯是相互独立的.
(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,
(2)求这名同学在上学路上因遇到红灯停留的总时间.
当前题号:4 | 题型:解答题 | 难度:0.99
某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为,则的数学期望为(  )
A.400B.300C.200D.100
当前题号:5 | 题型:单选题 | 难度:0.99
下面说法中正确(  )
A.离散型随机变量的均值反映了取值的概率的平均值
B.离散型随机变量的方差反映了取值的平均水平
C.离散型随机变量的均值反映了取值的平均水平
D.离散型随机变量的方差反映了取值的概率的平均值
当前题号:6 | 题型:单选题 | 难度:0.99
抛掷一枚质地均匀的骰子,用X表示掷出偶数点的次数.
(1)若抛掷一次,求E(X)和D(X);
(2)若抛掷10次,求E(X)和D(X).
当前题号:7 | 题型:解答题 | 难度:0.99
已知ξ的分布列如下表,则D(ξ)的值为 ( )
ξ
1
2
3
4
P




 
A.B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
已知随机变量的分布列为

则D的值为(   )
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99
中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.济南市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).

(1)求此次拦查中醉酒驾车的人数;
(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,
再从抽取的8人中任取3人,求3人中含有醉酒驾车人数x的分布列和期望.
当前题号:10 | 题型:解答题 | 难度:0.99