射击中每次击中目标得1分,未击中目标得0分,已知某运动员每次射击击中目标的概率是0.7,假设每次射击击中目标与否互不影响,则他射击3次的得分的数学期望是(    )
A.2.1B.2C.0.9D.0.63
当前题号:1 | 题型:单选题 | 难度:0.99
按照我国《机动车交通事故责任强制保险条例》规定,交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是保费浮动机制,保费与上一、二、三个年度车辆发生道路交通事故的情况相关联,发生交通事故的次数越多,费率也就越高,具体浮动情況如表:

某机构为了研究某一品牌普通7座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车在下一年续保时的情况,统计得到了下面的表格:

以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)某家庭有一辆该品牌车且车龄刚满三年,记为该车在第四年续保时的费用,求的分布列;
(2)某销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.
①若该销售商购进三辆车(车龄已满三年)该品牌二手车,求这三辆车中至少有2辆事故车的概率;
②假设购进一辆事故车亏损4000元,一辆非事故车盈利8000元.若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求其获得利润的期望值.
当前题号:2 | 题型:解答题 | 难度:0.99
“微信运动”是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注“微信运动”公众号查看自己及好友每日行走的步数、排行榜,也可以与其他用户进行运动量的或点赞.现从某用户的“微信运动”朋友圈中随机选取40人,记录他们某一天的行走步数,并将数据整理如下:
步数/步
0~2000
2001~5000
5001~8000
8001~10000
10000以上
男性人数/人
1
6
9
5
4
女性人数/人
0
3
6
4
2
 
规定:用户一天行走的步数超过8000步时为“运动型”,否则为“懈怠型”.
(1)将这40人中“运动型”用户的频率看作随机抽取1人为“运动型”用户的概率.从该用户的“微信运动”朋友圈中随机抽取4人,记为“运动型”用户的人数,求的数学期望;
(2)现从这40人中选定8人(男性5人,女性3人),其中男性中“运动型”有3人,“懈怠型”有2人,女性中“运动型”有2人,“懈怠型”有1人.从这8人中任意选取男性3人、女性2人,记选到“运动型”的人数为,求的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
某商场为了了解顾客的购物信息,随机在商场收集了位顾客购物的相关数据如下表:
一次购物款(单位:元)





顾客人数





 
统计结果显示位顾客中购物款不低于元的顾客占,该商场每日大约有名顾客,为了增加商场销售额度,对一次购物不低于元的顾客发放纪念品.
(Ⅰ)试确定, 的值,并估计每日应准备纪念品的数量;
(Ⅱ)现有人前去该商场购物,求获得纪念品的数量的分布列与数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
已知随机变量服从二项分布,则(  )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
某大学城校区与本部校区之间的驾车单程所需时间为只与道路畅通状况有关,对其容量为500的样本进行统计,结果如下:
(分钟)
25
30
35
40
频数(次)
100
150
200
50
 
以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率.
(1)求的分布列与
(2)某天有3位教师独自驾车从大学城校区返回本部校区,记表示这3位教师中驾车所用时间少于的人数,求的分布列与
(3)下周某天张老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求张老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.
当前题号:6 | 题型:解答题 | 难度:0.99
甲、乙两支球队进行总决赛,比赛采用五场三胜制,即若有一队先胜三场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.
(1)求总决赛中获得门票总收入恰好为150万元且甲获得总冠军的概率;
(2)设总决赛中获得的门票总收入为,求的分布列和数学期望
当前题号:7 | 题型:解答题 | 难度:0.99
设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=,则D(η)=   (  )
A.B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
假定某人在规定区域投篮命中的概率为,现他在某个投篮游戏中,共投篮3次.
(1)求连续命中2次的概率;
(2)设命中的次数为X,求X的分布列和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
随机变量的值为____________.
当前题号:10 | 题型:填空题 | 难度:0.99