- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条件概率
- 事件的独立性
- + 独立重复试验
- 独立重复试验的概念
- 独立重复试验的概率问题
- 二项分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是
.
(1)求油罐被引爆的概率;
(2)如果引爆或子弹打光则停止射击,设射击次数为
,求
的分布列及
.( 结果用分数表示)

(1)求油罐被引爆的概率;
(2)如果引爆或子弹打光则停止射击,设射击次数为



一批产品的合格率为90%,检验员抽检时出错率为10%,则检验员抽取一件产品,检验为合格品的概率是( )
A.0.81 | B.0.82 | C.0.90 | D.0.91 |
口袋内装有100个大小相同的红球、白球和黑球,其中有45个红球;从中摸出1个球,若摸出白球的概率为0.23,则摸出黑球的概率为____________.
甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为
,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数
的分布列和数学期望.

(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数

某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为
和
,且各株大树是否成活互不影响.求移栽的4株大树中:
(Ⅰ)两种大树各成活1株的概率;
(Ⅱ)成活的株数
的分布列与期望.


(Ⅰ)两种大树各成活1株的概率;
(Ⅱ)成活的株数

在每道单项选择题给出的4个备选答案中,只有一个是正确的.若对4道选择题中的每一道都任意选定一个答案,求这4道题中:
(1)恰有两道题答对的概率;
(2)至少答对一道题的概率.
(1)恰有两道题答对的概率;
(2)至少答对一道题的概率.
流星穿过大气层落在地面上的概率为0.002,流星数为10的流星群穿过大气层有4个落在地面上的概率为( )
A.3.32×10-5 | B.3.32×10-9 | C.6.64×10-5 | D.6.64×10-9 |