- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 独立事件的判断
- 相互独立事件与互斥事件
- 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给出下列结论:
(1)在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;
(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;
(3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;
(4)若关于
的不等式
在
上恒成立,则
的最大值是1;
(5)甲、乙两人向同一目标同时射击一次,事件
:“甲、乙中至少一人击中目标”与事件
:“甲,乙都没有击中目标”是相互独立事件.
其中结论正确的是 .(把所有正确结论的序号填上)
(1)在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;
(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;
(3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;
(4)若关于




(5)甲、乙两人向同一目标同时射击一次,事件


其中结论正确的是 .(把所有正确结论的序号填上)
分别抛掷2枚质地均匀的硬币,设“第1枚为正面”为事件A,“第2枚为正面”为事件B,“2枚结果相同”为事件C,有下列三个命题:
①事件A与事件B相互独立;
②事件B与事件C相互独立;
③事件C与事件A相互独立.
以上命题中,正确的个数是( )
①事件A与事件B相互独立;
②事件B与事件C相互独立;
③事件C与事件A相互独立.
以上命题中,正确的个数是( )
A.0 | B.1 | C.2 | D.3 |
一道数学竞赛试题,甲解出它的概率为
,乙解出它的概率为
,丙解出它的概率为
,由甲、乙、丙三人独立解答此题,只有1人解出的概率为_____.



抛掷一枚均匀的骰子两次,在下列事件中,与事件“第一次得到6点”不互相独立的事件是( )
A.“两次得到的点数和是12” |
B.“第二次得到6点” |
C.“第二次的点数不超过3点” |
D.“第二次的点数是奇数” |
甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.
那么甲得冠军且丙得亚军的概率是( )
| 甲 | 乙 | 丙 | 丁 |
甲 | ![]() | ![]() | ![]() | ![]() |
乙 | ![]() | ![]() | ![]() | ![]() |
丙 | ![]() | ![]() | ![]() | ![]() |
丁 | ![]() | ![]() | ![]() | ![]() |
那么甲得冠军且丙得亚军的概率是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图,
表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是( ).



A.0.994 | B.0.686 | C.0.504 | D.0.496 |
下列命题中真命题是( )
(1)在
的二项式展开式中,共有
项有理项;
(2)若事件
、
满足
,
,
,则事件
、
是相互独立事件;
(3)根据最近
天某医院新增疑似病例数据,“总体均值为
,总体方差为
”,可以推测“最近
天,该医院每天新增疑似病例不超过
人”.
(1)在


(2)若事件







(3)根据最近





A.(1)(2) | B.(1)(3) | C.(2)(3) | D.(1)(2)(3) |
下面结论正确的是( )
A.若![]() |
B.若![]() |
C.若事件A与B是互斥事件,则A与![]() |
D.若事件A与B是相互独立事件,则A与![]() |