- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为
、
、
、
、
、
、
、
共8个等级.参照正态分布原则,确定各等级人数所占比例分别为
、
、
、
、
、
、
、
.选考科目成绩计入考生总成绩时,将
至
等级内的考生原始成绩,依照等比例转换法则,分别转换到
、
、
、
、
、
、
、
八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布
.
(1)求物理原始成绩在区间
的人数;
(2)按高考改革方案,若从全省考生中随机抽取3人,记
表示这3人中等级成绩在区间
的人数,求
的分布列和数学期望.
(附:若随机变量
,则
,
,
)



























(1)求物理原始成绩在区间

(2)按高考改革方案,若从全省考生中随机抽取3人,记



(附:若随机变量




小红和小明利用体育课时间进行投篮游戏,规定双方各投两次,进球次数多者获胜.已知小红投篮命中的概率为
,小明投篮命中的概率为
,且两人投篮相互独立,则小明获胜的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.7,现两人各自独立射击一次,均中靶的概率为 ______ .
某校学生一次考试成绩X(单位:分)服从正态分布N(110,102),从中抽取一个同学的成绩ξ,记“该同学的成绩满足90<ξ≤110”为事件A,记“该同学的成绩满足80<ξ≤100”为事件B,则在A事件发生的条件下B事件发生的概率P(B|A)=( )
附:X满足P(μ﹣σ<X≤μ+σ)=0.68,P(μ﹣2σ<X≤μ+2σ)=0.95,P(μ﹣3σ<ξ≤μ+3σ)=0.99.
附:X满足P(μ﹣σ<X≤μ+σ)=0.68,P(μ﹣2σ<X≤μ+2σ)=0.95,P(μ﹣3σ<ξ≤μ+3σ)=0.99.
A.![]() | B.![]() | C.![]() | D.![]() |
某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
《福建省高考改革试点方案》规定:从2018年秋季高中入学的新生开始,不分文理科;2021年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成,将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%、7%、18%、22%、22%、18%、7%、3%,选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71.80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩,某校高一年级共2000人,为给高一学生合理选科提供依据,对六门选考科目进行测试,其中化学考试原始成绩
基本服从正态分布
.
(1)求化学原始成绩在区间(57,96)的人数;
(2)以各等级人数所占比例作为各分数区间发生的概率,按高考改革方案,若从全省考生中随机抽取3人,记
表示这3人中等级成绩在区间[71,90]的人数,求事件
的概率
(附:若随机变量
,
,
)


(1)求化学原始成绩在区间(57,96)的人数;
(2)以各等级人数所占比例作为各分数区间发生的概率,按高考改革方案,若从全省考生中随机抽取3人,记


(附:若随机变量



甲乙两人从1,2,3,
15这15个数中,依次任取一个数(不放回),则在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是( )

A.![]() | B.![]() | C.![]() | D.![]() |
乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性均为
.
(1)求甲以4比0或4比1获胜的概率;
(2)求比赛局数
的分布列及均值.

(1)求甲以4比0或4比1获胜的概率;
(2)求比赛局数
