- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知甲盒中有20个螺杆,其中A型16个,B型4个;乙盒中有24个螺母,其中A型18个,B型6个.现从甲、乙两盒中各任取一个,记事件A:“甲盒中抽得A型螺杆”,B:“乙盒中抽得B型螺母”,则事件A与
( )

A.互斥 | B.对立 | C.相互独立 | D.不相互独立 |
投掷一枚质地均匀的硬币和一枚质地均匀的骰子各一次,记事件A为“硬币的正面向上”,事件B为“骰子向上的点数为2”,则A与B( )
A.是互斥事件 | B.是对立事件 | C.相互独立 | D.不相互独立 |
甲、乙、丙三位学生用计算机联网学习数学,每天上课后独立完成6道自我检测题,甲及格的概率为
,乙及格的概率为
,丙及格的概率为
,三人各答一次,则三人中只有一人及格的概率为( )



A.![]() | B.![]() | C.![]() | D.以上都不对 |
甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为
,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为
,甲、丙两台机床加工的零件都是一等品的概率为
.分别求甲、乙、丙三台机床各自加工的零件是一等品的概率.



小明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):
(1)从上述比赛中随机选择一场,求小明在该场比赛中投篮命中率超过0.6的概率;
(2)从上述比赛中随机选择一个主场和一个客场,求小明的投篮命中率一场超过0.6,一场不超过0.6的概率.
场次 | 投篮次数 | 命中次数 |
主场1 | 22 | 12 |
主场2 | 15 | 12 |
主场3 | 12 | 8 |
主场4 | 23 | 8 |
主场5 | 24 | 20 |
场次 | 投篮次数 | 命中次数 |
客场1 | 18 | 8 |
客场2 | 13 | 12 |
客场3 | 21 | 7 |
客场4 | 18 | 15 |
客场5 | 25 | 12 |
(1)从上述比赛中随机选择一场,求小明在该场比赛中投篮命中率超过0.6的概率;
(2)从上述比赛中随机选择一个主场和一个客场,求小明的投篮命中率一场超过0.6,一场不超过0.6的概率.
(多选题)从甲袋中摸出一个红球的概率是
,从乙袋中摸出一个红球的概率是
,从两袋各摸出一个球,下列结论正确的是( )


A.2个球都是红球的概率为![]() | B.2个球不都是红球的概率为![]() |
C.至少有1个红球的概率为![]() | D.2个球中恰有1个红球的概率为![]() |