- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
高三学生为了迎接高考,要经常进行模拟考试,锻炼应试能力,某学生从升入高三到高考要参加10次模拟考试,下面是高三第一学期某学生参加5次模拟考试的数学成绩表:
(1)已知该考生的模拟考试成绩y与模拟考试的次数x满足回归直线方程
,若高考看作第11次模拟考试,试估计该考生的高考数学成绩;
(2)把这5次模拟考试的数学成绩单放在5个相同的信封中,从中随机抽取3份试卷的成绩单进行研究,设抽取考试成绩不等于平均值
的个数为
,求出
的分布列与数学期望.
参考公式:

.
模拟考试第x次 | 1 | 2 | 3 | 4 | 5 |
考试成绩y分 | 90 | 100 | 105 | 105 | 100 |
(1)已知该考生的模拟考试成绩y与模拟考试的次数x满足回归直线方程

(2)把这5次模拟考试的数学成绩单放在5个相同的信封中,从中随机抽取3份试卷的成绩单进行研究,设抽取考试成绩不等于平均值



参考公式:



自由购是通过自助结算方式购物的一种形式.某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:
(Ⅰ)现随机抽取1名顾客,试估计该顾客年龄在
且未使用自由购的概率;
(Ⅱ)从被抽取的年龄在
使用自由购的顾客中,随机抽取3人进一步了解情况,用
表示这3人中年龄在
的人数,求随机变量
的分布列及数学期望;
(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.
| 20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 |
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)现随机抽取1名顾客,试估计该顾客年龄在

(Ⅱ)从被抽取的年龄在




(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.
近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用
模式,其中语文、数学、外语三科为必考科目,每门科目满分均为
分.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物
门科目中自选
门参加考试(
选
),每门科目满分均为
分.为了应对新高考,某高中从高一年级
名学生(其中男生
人,女生
人)中,采用分层抽样的方法从中抽取
名学生进行调查,其中,女生抽取
人.
(1)求
的值;
(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的
名学生进行问卷调查(假定每名学生在“物理”和“地理”这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的一个不完整的
列联表,请将下面的
列联表补充完整,并判断是否有
的把握认为选择科目与性别有关?说明你的理由;
(3)在抽取到的
名女生中,按(2)中的选课情况进行分层抽样,从中抽出
名女生,再从这
名女生中抽取
人,设这
人中选择“物理”的人数为
,求
的分布列及期望.附:
,












(1)求

(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的




| 选择“物理” | 选择“地理” | 总计 |
男生 | | ![]() | |
女生 | ![]() | | |
总计 | | | |
(3)在抽取到的









![]() | 0.05 | 0.01 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.828 |
近来天气变化无常,陡然升温、降温幅度大于
的天气现象出现增多.陡然降温幅度大于
容易引起幼儿伤风感冒疾病.为了解伤风感冒疾病是否与性别有关,在某妇幼保健院随机对人院的
名幼儿进行调查,得到了如下的列联表,若在全部
名幼儿中随机抽取
人,抽到患伤风感冒疾病的幼儿的概率为
,
(1)请将下面的列联表补充完整;
(2)能否在犯错误的概率不超过
的情况下认为患伤风感冒疾病与性别有关?说明你的理由;
(3)已知在患伤风感冒疾病的
名女性幼儿中,有
名又患黄痘病.现在从患伤风感冒疾病的
名女性中,选出
名进行其他方面的排查,记选出患黄痘病的女性人数为
,求
的分布列以及数学期望.下面的临界值表供参考:
参考公式:
,其中






(1)请将下面的列联表补充完整;
| 患伤风感冒疾病 | 不患伤风感冒疾病 | 合计 |
男 | | 25 | |
女 | 20 | | |
合计 | | | 100 |
(2)能否在犯错误的概率不超过

(3)已知在患伤风感冒疾病的






![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:


某电视台举行一个比赛类型的娱乐节目,
两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将
队第六位选手的成绩没有给出,并且告知大家
队的平均分比
队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.

(1)主持人从
队所有选手成绩中随机抽取2个,求至少有一个为“晋级”的概率;
(2)主持人从
两队所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为
,求
的分布列及数学期望.





(1)主持人从

(2)主持人从



空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:

(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.
![]() 日均浓度 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类型 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:

(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.
第七届世界军人运动会于2019年10月18日至2019年10月27日在中国武汉举行,第七届世界军人运动会是我国第一次承办的综合性国际军事体育赛事,也是继北京奥运会之后我国举办的规模最大的国际体育盛会.来自109个国家的9300余名军体健儿在江城武汉同场竞技、增进友谊.运动会共设置射击、游泳、田径、篮球等27个大项、329个小项.经过激烈角逐,奖牌榜的前6名如下:

某大学德语系同学利用分层抽样的方式从德国获奖选手中抽取了9名获奖代表.
(1)请问这9名获奖代表中获金牌、银牌、铜牌的人数分别是多少人?
(2)从这9人中随机抽取3人,记这3人中银牌选手的人数为
,求
的分布列和期望;
(3)从这9人中随机抽取3人,求已知这3人中有获金牌运动员的前提下,这3人中恰好有1人为获铜牌运动员的概率.

某大学德语系同学利用分层抽样的方式从德国获奖选手中抽取了9名获奖代表.
(1)请问这9名获奖代表中获金牌、银牌、铜牌的人数分别是多少人?
(2)从这9人中随机抽取3人,记这3人中银牌选手的人数为


(3)从这9人中随机抽取3人,求已知这3人中有获金牌运动员的前提下,这3人中恰好有1人为获铜牌运动员的概率.
春节期间,受烟花爆竹集中燃放影响,我国多数城市空气中
浓度快速上升,特别是在大气扩散条件不利的情况下,空气质量在短时间内会迅速恶化
年除夕18时和初一2时,国家环保部门对8个城市空气中
浓度监测的数据如表
单位:微克
立方米
.
Ⅰ
求这8个城市除夕18时空气中
浓度的平均值;
Ⅱ
环保部门发现:除夕18时到初一2时空气中
浓度上升不超过100的城市都是“禁止燃放烟花爆竹“的城市,浓度上升超过100的城市都未禁止燃放烟花爆竹
从以上8个城市中随机选取3个城市组织专家进行调研,记选到“禁止燃放烟花爆竹”的城市个数为X,求随机变量y的分布列和数学期望;
Ⅲ
记2017年除夕18时和初一2时以上8个城市空气中
浓度的方差分别为
和
,比较
和
的大小关系
只需写出结果
.






| 除夕18时![]() | 初一2时![]() |
北京 | 75 | 647 |
天津 | 66 | 400 |
石家庄 | 89 | 375 |
廊坊 | 102 | 399 |
太原 | 46 | 115 |
上海 | 16 | 17 |
南京 | 35 | 44 |
杭州 | 131 | 39 |
















德阳中学数学竞赛培训共开设有初等代数、初等几何、初等数论和微积分初步共四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格,现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同,(见下表),且每一门课程是否合格相互独立,
(1)求甲同学取得参加数学竞赛复赛的资格的概率;
(2)记
表示三位同学中取得参加数学竞赛复赛的资格的人数,求
的分布列及期望
.
课 程 | 初等代数 | 初等几何 | 初等数论 | 微积分初步 |
合格的概率 | ![]() | ![]() | ![]() | ![]() |
(1)求甲同学取得参加数学竞赛复赛的资格的概率;
(2)记



某市在开展创建“全国文明城市”活动中,工作有序扎实,成效显著,尤其是城市环境卫生大为改观,深得市民好评.“创文”过程中,某网站推出了关于环境治理和保护问题情况的问卷调查,现从参与问卷调查的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.

(1)求出a的值;
(2)若已从年龄较小的第1,2组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,设第2组抽到
人,求随机变量
的分布列及数学期望
.






(1)求出a的值;
(2)若已从年龄较小的第1,2组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,设第2组抽到


