某校辨论队计划在周六、周日各参加一场辨论赛,分别由正、副队长负责,已知该校辩论队共有10位成员(包含正、副队长),每场比赛除负责人外均另需3位队员(同一队员可同时参加两天的比赛,正、副队长只能参加一场比赛).假设正副队长分别将各自比赛通知的信息独立、随机地发给辩论队8名队员中的3位,且所发信息都能收到.
(1)求辩论队员甲收到队长或副队长所发比赛通知信息的概率;
(2)记辩论队收到正副队长所发比赛通知信息的队员人数为随机变量,求的分布列及其数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如下表:
比例    学校
等级
学校A
学校B
学校C
学校D
学校E
学校F
学校G
学校H
优秀
8%
3%
2%
9%
1%
22%
2%
3%
良好
37%
50%
23%
30%
45%
46%
37%
35%
及格
22%
30%
33%
26%
22%
17%
23%
38%
不及格
33%
17%
42%
35%
32%
15%
38%
24%
 
(1)从8所学校中随机选出一所学校,求该校为先进校的概率;
(2)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;
(3)设8所学校优秀比例的方差为S12,良好及其以下比例之和的方差为S22,比较S12S22的大小.(只写出结果)
当前题号:2 | 题型:解答题 | 难度:0.99
学校在高二年级开设了共4门不同的选修课,每个学生必须从中任选一门.已知高二的3名学生甲、乙、丙对这4门选修课的兴趣相同(即选这四门课是等可能的);
(1)求甲、乙、丙三人选择的选修课都不相同的概率;
(2)求恰有2门选修课甲、乙、丙都没有选择的概率;
(3)设随机变量为甲、乙、丙三人中选修这门课的人数,求的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.
年份
网民人数
互联网普及率
手机网民人数
手机网民普及率
2009




2010




2011




2012




2013




2014




2015




2016




2017




2018




 
(互联网普及率(网民人数/人口总数)×100%;手机网民普及率(手机网民人数/人口总数)×100%)
(Ⅰ)从这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;
(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记为手机网民普及率超过50%的年数,求的分布列及数学期望;
(Ⅲ)若记年中国网民人数的方差为,手机网民人数的方差为,试判断的大小关系.(只需写出结论)
当前题号:4 | 题型:解答题 | 难度:0.99
某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响,用表示乙队的总得分.
(Ⅰ)求的分布列及数学期望;
(Ⅱ)求甲、乙两队总得分之和等于30分且甲队获胜的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
购买金额(元)






人数
10
15
20
15
20
10
 
(1)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.
 
不少于60元
少于60元
合计

 
40
 

18
 
 
合计
 
 
 
 
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为(每次抽奖互不影响,且的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数(元)的分布列并求其数学期望.
附:参考公式和数据:.
附表:

2.072
2.706
3.841
6.635
7.879

0.150
0.100
0.050
0.010
0.005
 
当前题号:6 | 题型:解答题 | 难度:0.99
某企业生产A产品的质量以其质量指标值衡量,质量指标值划分等级及产品售价如下表:
质量指标值m



产品等级
等品
二等品
三等品
售价(每件)
160元
140元
120元
 
从该企业生产的A产品中抽取100件作为样本,检测其质量指标值,得到下图的频率分布直方图.

(1)根据频率分布直方图,求A产品质量指标值的中位数;
(2)用样本频率估计总体概率.现有一名顾客随机购买两件A产品,设其支付的费用为X元,求X的分布列及数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
某公司新研发了一款手机应用APP,投入市场三个月后,公司对部分用户做了调研:抽取了400位使用者,每人填写一份综合评分表(满分为100分).现从400份评分表中,随机抽取40份(其中男、女使用者的评分表各20份)作为样本,经统计得到如下的茎叶图:
女性使用者评分
 
男性使用者评分
7
6
7  8  9  9
1  2  5
7
0  2  2  3  4  5  6  6  7  8  9
0  3  3  3  4  4  5  6  6  8
8
2  4  4  9
0  0  1  2  2  2
9
2
 
记该样本的中位数为,按评分情况将使用者对该APP的态度分为三种类型:评分不小于的称为“满意型”,评分不大于的称为“不满意型”,其余的都称为“须改进型”.
(1)求的值,并估计这400名使用者中“须改进型”使用者的个数;
(2)为了改进服务,公司对“不满意型”使用者进行了回访,根据回访意见改进后,再从“不满意型”使用者中随机抽取3人进行第二次调查,记这3人中的女性使用者人数为,求的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
有一大批产品,其验收方案如下,先做第一次检验:从中任取8件,经检验都为优质品时接受这批产品,若优质品数小于6件则拒收;否则做第二次检验,其做法是从产品中再另任取3件,逐一检验,若检测过程中检测出非优质品就要终止检验且拒收这批产品,否则继续产品检测,且仅当这3件产品都为优质品时接受这批产品.若产品的优质品率为0.9.且各件产品是否为优质品相互独立.
(1)记为第一次检验的8件产品中优质品的件数,求的期望与方差;
(2)求这批产品被接受的概率;
(3)若第一次检测费用固定为1000元,第二次检测费用为每件产品100元,记为整个产品检验过程中的总费用,求的分布列.
(附:
当前题号:9 | 题型:解答题 | 难度:0.99
已知一堆产品中有一等品2件,二等品3件,三等品4件,现从中任取3件产品.
(1)求一、二、三等品各取到一个的概率;
(2)记表示取到一等品的件数,求的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99