刷题首页
题库
高中数学
题干
某技术公司新开发了
两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:
测试指标
产品
8
12
40
32
8
产品
7
18
40
29
6
(1)试分别估计产品
,产品
为正品的概率;
(2)生产一件产品
,若是正品可盈利80元,次品则亏损10元;生产一件产品
,若是正品可盈利100元,次品则亏损20元,在(1)的前提下,记
为生产1件产品
和1件产品
所得的总利润,求随机变量
的分列和数学期望。
上一题
下一题
0.99难度 解答题 更新时间:2016-08-31 05:36:44
答案(点此获取答案解析)
同类题1
目前南昌市正在进行师大地铁站点围挡建设,为缓解北京西路交通压力,计划将该路段实施“交通限行”.在该路段随机抽查了50人,了解公众对“该路段限行”的态度,将调查情况进行整理,制成下表:
(1)完成被调查人员年龄的频率分布直方图;
(2)若从年龄在
的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“交通限行”的人数为
,求随机变量
的分布列和数学期望.
同类题2
某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度.在每一轮游戏中,主持人给出
A
,
B
,
C
,
D
四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果.设小孩对四种食物排除的序号依次为
x
A
x
B
x
C
x
D
,家长猜测的序号依次为
y
A
y
B
y
C
y
D
,其中
x
A
x
B
x
C
x
D
和
y
A
y
B
y
C
y
D
都是1,2,3,4四个数字的一种排列.定义随机变量
X
=(
x
A
﹣
y
A
)
2
+(
x
B
﹣
y
B
)
2
+(
x
C
﹣
y
C
)
2
+(
x
D
﹣
y
D
)
2
,用
X
来衡量家长对小孩饮食习惯的了解程度.
(1)若参与游戏的家长对小孩的饮食习惯完全不了解.
(ⅰ)求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;
(ⅱ)求
X
的分布列(简要说明方法,不用写出详细计算过程);
(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足
X
<4,请判断这位家长对小孩饮食习惯是否了解,说明理由.
同类题3
为了解我区中学生的体质状况及城乡大学生的体质差异,对银川地区部分大学的学生进行了身高、体重和肺活量的抽样调查.现随机抽取100名学生,测得其身高情况如下表所示
(1)请在频率分布表中的①、②、③位置填上相应的数据,并补全频率分布直方图,再根据频率分布直方图估计众数的值;
(2)若按身高分层抽样,抽取20人参加2011年庆元旦“步步高杯”全民健身运动其中有3名学生参加越野比赛,记这3名学生中“身高低于170Ccm”的人数为
,求
的分布列及期望.
同类题4
某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
购买金额(元)
人数
10
15
20
15
20
10
(1)根据以上数据完成
列联表,并判断是否有
的把握认为购买金额是否少于60元与性别有关.
不少于60元
少于60元
合计
男
40
女
18
合计
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为
(每次抽奖互不影响,且
的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数
(元)的分布列并求其数学期望.
附:参考公式和数据:
,
.
附表:
2.072
2.706
3.841
6.635
7.879
0.150
0.100
0.050
0.010
0.005
同类题5
南昌市教育局组织中学生足球比赛,共有实力相当的8支代表队(含有一中代表队,二中代表队)参加比赛,比赛规则如下:
第一轮:抽签分成四组,每组两队进行比赛,胜队进入第二轮,第二轮:将四队分成两组,每组两队进行比赛,胜队进入第三轮,第三轮:两队进行决赛,胜队获得冠军.现记ξ=0表示整个比赛中一中代表队与二中代表队没有相遇,ξ=
i
表示恰好在第
i
轮比赛时一中代表队,二中代表队相遇(
i
=1,2,3).
(1)求ξ的分布列;
(2)求
E
ξ.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量及其分布列
离散型随机变量的分布列
写出简单离散型随机变量分布列
求离散型随机变量的均值