某校高一200名学生的期中考试语文成绩服从正态分布,数学成绩的频数分布直方图如下:

(1)计算这次考试的数学平均分,并比较语文和数学哪科的平均分较高(假设数学成绩在频率分布直方图中各段是均匀分布的);
(2)如果成绩大于85分的学生为优秀,这200名学生中本次考试语文、数学优秀的人数大约各多少人?
(3)如果语文和数学两科都优秀的共有4人,从(2)中的这些同学中随机抽取3人,设三人中两科都优秀的有人,求的分布列和数学期望.
(附参考公式)若,则
当前题号:1 | 题型:解答题 | 难度:0.99
已知某校有甲、乙两个兴趣小组,其中甲组有2名男生、3名女生,乙组有3名男生、1名女生,学校计划从两兴趣小组中随机各选2名成员参加某项活动 .
(1)求选出的4名选手中恰好有1名女生的选派方法数;
(2)记X为选出的女选手的人数,求X的概率分布和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
已知随机变量的分布列如表,其中为等差数列,若,则等于(   )








 
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
已知箱中装有个白球和个黑球,且规定:取出一个白球得分,取出一个黑球得分.现从该箱中任取个球,记随机变量为取出球所得分数之和.
)求的分布列;
)求的数学期望
当前题号:4 | 题型:解答题 | 难度:0.99
某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.
(1)求这支篮球队首次胜场前已经负了两场的概率;
(2)求这支篮球队在6场比赛中恰好胜了3场的概率;
(3)求这支篮球队在6场比赛中胜场数的期望和方差.
当前题号:5 | 题型:解答题 | 难度:0.99
为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,安徽省于2012年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2160度以下(含2160度),执行第一档电价0.5653元/度;第二阶梯电量:年用电量2161至4200度(含4200度),执行第二档电价0.6153元/度;第三阶梯电量:年用电量4200度以上,执行第三档电价0.8653元/度.
某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:
用户编号
1
2
3
4
5
6
7
8
9
10
年用电量(度)
1000
1260
1400
1824
2180
2423
2815
3325
4411
4600
 
(Ⅰ)试计算表中编号为10的用电户本年度应交电费多少元?
(Ⅱ)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列与期望;
(Ⅲ)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到户用电量为第一阶梯的可能性最大,求的值.
当前题号:6 | 题型:解答题 | 难度:0.99
2017年9月,国务院发布了《关于深化考试招生制度改革的实施意见》.某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科.每个考生,英语、语文、数学三科为必考科目,并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考.物理、化学、生物为自然科学科目,政治、历史、地理为社会科学科目.假设某位考生选考这六个科目的可能性相等.
(1)求他所选考的三个科目中,至少有一个自然科学科目的概率;
(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目.若该考生所选的社会科学科目考试的成绩获等的概率都是0.8,所选的自然科学科目考试的成绩获等的概率都是0.75,且所选考的各个科目考试的成绩相互独立.用随机变量表示他所选的三个科目中考试成绩获等的科目数,求的分布列和数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
下列4个图从左到右位次是四位同学甲、乙、丙、丁的五能评价雷达图:

在从他们四人中选一位发展较全面的学生,则应该选择(   )
A.甲B.乙C.丙D.丁
当前题号:8 | 题型:单选题 | 难度:0.99
甲,乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为的分布列如下表.

)分别求期望
)试对这两名工人的技术水平进行比较.
当前题号:9 | 题型:解答题 | 难度:0.99
在篮球比赛中,罚球命中次得分,不中得分.如果运动员甲罚球命中的概率是,记运动员甲罚球次的得分为,则等于(    ).
A.B.C.D.
当前题号:10 | 题型:单选题 | 难度:0.99