- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记
,求随机变量
的分布列与数学期望
.
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记



深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球), 3 个是旧球(即至少用过一次的球).每次训练,都从中任意取出2 个球,用完后放回.
(1)设第一次训练时取到的新球个数为
,求
的分布列和数学期望;
(2)求第二次训练时恰好取到一个新球的概率.
(1)设第一次训练时取到的新球个数为


(2)求第二次训练时恰好取到一个新球的概率.
王先生家住
小区,他工作在
科技园区,从家开车到公司上班路上有
两条路线(如图),
路线上有
三个路口,各路口遇到红灯的概率均为
;
路线上有
两个路口,各路口遇到红灯的概率依次为
,若走
路线,王先生最多遇到1次红灯的概率为__________;若走
路线,王先生遇到红灯次数
的数学期望为__________.













一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).

(1)求
的值;
(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望. (以直方图中的频率作为概率).

(1)求

(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望. (以直方图中的频率作为概率).
甲、乙、丙三名学生参加某电视台举办的国学知识竞赛,在本次竞赛中只有过关和不过关两种结果,假设甲、乙、丙竞赛过关的概率分别为
,且他们竞赛过关与否互不影响.
(1)求在这次国学知识竞赛中,甲、乙、丙三名学生至少有一名学生过关的概率;
(2)记在这次国学知识竞赛中,甲、乙、丙三名学生过关的人数为
,求随机变量
的分布列和数学期望

(1)求在这次国学知识竞赛中,甲、乙、丙三名学生至少有一名学生过关的概率;
(2)记在这次国学知识竞赛中,甲、乙、丙三名学生过关的人数为



某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为
.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为
,每次中奖均可获奖金400元.
(1)求某员工选择方案甲进行抽奖所获奖金
(元)的分布列;
(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为

方案乙:员工连续三次抽奖,每次中奖率均为

(1)求某员工选择方案甲进行抽奖所获奖金

(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?
某校与英国某高中结成友好学校,该校计划选派3人作为交换生到英国进行一个月的生活体验,学校准备从该校英语兴趣小组的6名同学中选派,已知英语兴趣小组中男生有4人,女生有2人
(1)求男生甲或女生乙被选的概率
(2)记选派的3人中的女生人数为随机变量
,求
的分布列及数学期望.
(1)求男生甲或女生乙被选的概率
(2)记选派的3人中的女生人数为随机变量


2017年5月13日第30届大连国际马拉松赛举行,某单位的10名跑友报名参加了半程马拉松、10公里健身跑、迷你马拉松3个项目(每人只报一项),报名情况如下:
(其中:半程马拉松
公里,迷你马拉松
公里)
(1)从10人中选出2人,求选出的两人赛程距离之差大于10公里的概率;
(2)从10人中选出2人,设
为选出的两人赛程距离之和,求随机变量
的分布列.
项目 | 半程马拉松 | 10公里健身跑 | 迷你马拉松 |
人数 | 2 | 3 | 5 |
(其中:半程马拉松


(1)从10人中选出2人,求选出的两人赛程距离之差大于10公里的概率;
(2)从10人中选出2人,设

