- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一个球,ξ表示所取球的标号.
(1)求ξ的分布列、期望和方差;
(2)若η=aξ+b,E(η)=1,D(η)=11,试求a,b的值.
(1)求ξ的分布列、期望和方差;
(2)若η=aξ+b,E(η)=1,D(η)=11,试求a,b的值.


| 0 | 1 | 2 |
巴黎 | ![]() | ![]() | ![]() |
皇马 | ![]() | ![]() | ![]() |
(1)按照预测,求巴黎在比赛中至少进两球的概率;
(2)按照预测,若设






已知从
地去
地有①或②两条路可走,并且汽车走路①堵车的概率为
,汽车走路②堵车的概率为
,若现在有两辆汽车走路①,有一辆汽车走路②,且这三辆车是否堵车相互之间没有影响,
(1)若这三辆汽车中恰有一辆汽车被堵的概率为
,求走路②堵车的概率;
(2)在(1)的条件下,求这三辆汽车中被堵车辆的辆数
的分布列和数学期望.




(1)若这三辆汽车中恰有一辆汽车被堵的概率为

(2)在(1)的条件下,求这三辆汽车中被堵车辆的辆数

(2016·威海模拟)三人参加某娱乐闯关节目,假设甲闯关成功的概率是
,乙、丙两人同时闯关成功的概率是
,甲、丙两人同时闯关失败的概率是
,且三人各自能否闯关成功相互独立.
(1)求乙、丙两人各自闯关成功的概率;
(2)设ξ表示三人中最终闯关成功的人数,求ξ的分布列和均值.



(1)求乙、丙两人各自闯关成功的概率;
(2)设ξ表示三人中最终闯关成功的人数,求ξ的分布列和均值.
某校从参加高三年级期末统考测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(Ⅱ)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取3个数,有放回地抽取了3次,记这3次抽取中,恰好是三个学生的数学成绩的次数为
,求
的分布列.
(Ⅱ)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取3个数,有放回地抽取了3次,记这3次抽取中,恰好是三个学生的数学成绩的次数为


某工厂生产的某产品按照每箱10件包装,每箱产品在流入市场之前都要检验.若整箱产品检验不通过,除去检验费用外,每箱还要损失100元.检验方案如下:
第一步,一次性随机抽取2件,若都合格则整箱产品检验通过;若都不合格则整箱产品检验不通过,检验结束,剩下的产品不再检验.若抽取的2件产品有且仅有1件合格,则进行第二步工作.
第二步,从剩下的8件产品中再随机抽取1件,若不合格,则整箱产品检验不通过,检验结束,剩下的产品不再检验.若合格,则进行第三步工作.
第三步,从剩下的7件产品中随机抽取1件,若不合格,则整箱产品检验不通过,若合格,则整箱产品检验通过,检验结束,剩下的产品都不再检验.
假设某箱该产品中有8件合格品,2件次品.
(Ⅰ)求该箱产品被检验通过的概率;
(Ⅱ)若每件产品的检验费用为10元,设该箱产品的检验费用和检验不通过的损失费用之和为
,求
的分布列和数学期望
.
第一步,一次性随机抽取2件,若都合格则整箱产品检验通过;若都不合格则整箱产品检验不通过,检验结束,剩下的产品不再检验.若抽取的2件产品有且仅有1件合格,则进行第二步工作.
第二步,从剩下的8件产品中再随机抽取1件,若不合格,则整箱产品检验不通过,检验结束,剩下的产品不再检验.若合格,则进行第三步工作.
第三步,从剩下的7件产品中随机抽取1件,若不合格,则整箱产品检验不通过,若合格,则整箱产品检验通过,检验结束,剩下的产品都不再检验.
假设某箱该产品中有8件合格品,2件次品.
(Ⅰ)求该箱产品被检验通过的概率;
(Ⅱ)若每件产品的检验费用为10元,设该箱产品的检验费用和检验不通过的损失费用之和为



在某次投篮测试中,有两种投篮方案:方案甲:先在A点投篮一次,以后都在B点投篮;方案乙:始终在B点投篮.每次投篮之间相互独立.某选手在A点命中的概率为
,命中一次记3分,没有命中得0分;在B点命中的概率为
,命中一次记2分,没有命中得0分,用随机变量
表示该选手一次投篮测试的累计得分,如果
的值不低于3分,则认为其通过测试并停止投篮,否则继续投篮,但一次测试最多投篮3次.
(1)若该选手选择方案甲,求测试结束后所得分
的分布列和数学期望.
(2)试问该选手选择哪种方案通过测试的可能性较大?请说明理由.




(1)若该选手选择方案甲,求测试结束后所得分

(2)试问该选手选择哪种方案通过测试的可能性较大?请说明理由.
大学生小王自主创业,在乡下承包了一块耕地种植某种水果,每季投入2万元,根据以往的经验,每季收获的此种水果能全部售完,且水果的市场价格和这块地上的产量具有随机性,互不影响,具体情况如表:

(1)设
表示在这块地种植此水果一季的利润,求
的分布列及期望;
(2)在销售收入超过5万元的情况下,利润超过5万元的概率.

(1)设


(2)在销售收入超过5万元的情况下,利润超过5万元的概率.