袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一个球,ξ表示所取球的标号.
(1)求ξ的分布列、期望和方差;
(2)若η=aξ+b,E(η)=1,D(η)=11,试求a,b的值.
当前题号:1 | 题型:解答题 | 难度:0.99
赛季的欧洲冠军联赛八分之一决赛的首回合较量将于北京时间2018年2月15日3:45在伯纳乌球场打响.由罗领衔的卫冕冠军皇家马德里队(以下简称“皇马”)将主场迎战刚刚创下欧冠小组赛最多进球记录的法甲领头羊巴黎圣日曼队(以下简称“巴黎”),激烈对决,一触即发.比赛分上,下两个半场进行,现在有加泰罗尼亚每题测皇马,巴黎的每半场进球数及概率如表:
 
0
1
2
巴黎



皇马



 
(1)按照预测,求巴黎在比赛中至少进两球的概率;
(2)按照预测,若设为皇马总进球数,为巴黎总进球数,求的分布列,并判断的大小.
当前题号:2 | 题型:解答题 | 难度:0.99
已知从地去地有①或②两条路可走,并且汽车走路①堵车的概率为,汽车走路②堵车的概率为,若现在有两辆汽车走路①,有一辆汽车走路②,且这三辆车是否堵车相互之间没有影响,
(1)若这三辆汽车中恰有一辆汽车被堵的概率为,求走路②堵车的概率;
(2)在(1)的条件下,求这三辆汽车中被堵车辆的辆数的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
(2016·威海模拟)三人参加某娱乐闯关节目,假设甲闯关成功的概率是,乙、丙两人同时闯关成功的概率是,甲、丙两人同时闯关失败的概率是,且三人各自能否闯关成功相互独立.
(1)求乙、丙两人各自闯关成功的概率;
(2)设ξ表示三人中最终闯关成功的人数,求ξ的分布列和均值.
当前题号:4 | 题型:解答题 | 难度:0.99
设随机变量ξ的分布列为P(ξk)= (k=1,2,3,4,5,6),则P(1.5<ξ<3.5)=________.
当前题号:5 | 题型:填空题 | 难度:0.99
某校从参加高三年级期末统考测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.

(Ⅰ)估计这次测试数学成绩的中位数;
(Ⅱ)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取3个数,有放回地抽取了3次,记这3次抽取中,恰好是三个学生的数学成绩的次数为,求的分布列.
当前题号:6 | 题型:解答题 | 难度:0.99
某工厂生产的某产品按照每箱10件包装,每箱产品在流入市场之前都要检验.若整箱产品检验不通过,除去检验费用外,每箱还要损失100元.检验方案如下:
第一步,一次性随机抽取2件,若都合格则整箱产品检验通过;若都不合格则整箱产品检验不通过,检验结束,剩下的产品不再检验.若抽取的2件产品有且仅有1件合格,则进行第二步工作.
第二步,从剩下的8件产品中再随机抽取1件,若不合格,则整箱产品检验不通过,检验结束,剩下的产品不再检验.若合格,则进行第三步工作.
第三步,从剩下的7件产品中随机抽取1件,若不合格,则整箱产品检验不通过,若合格,则整箱产品检验通过,检验结束,剩下的产品都不再检验.
假设某箱该产品中有8件合格品,2件次品.
(Ⅰ)求该箱产品被检验通过的概率;
(Ⅱ)若每件产品的检验费用为10元,设该箱产品的检验费用和检验不通过的损失费用之和为,求的分布列和数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
在某次投篮测试中,有两种投篮方案:方案甲:先在A点投篮一次,以后都在B点投篮;方案乙:始终在B点投篮.每次投篮之间相互独立.某选手在A点命中的概率为,命中一次记3分,没有命中得0分;在B点命中的概率为,命中一次记2分,没有命中得0分,用随机变量表示该选手一次投篮测试的累计得分,如果的值不低于3分,则认为其通过测试并停止投篮,否则继续投篮,但一次测试最多投篮3次.
(1)若该选手选择方案甲,求测试结束后所得分的分布列和数学期望.
(2)试问该选手选择哪种方案通过测试的可能性较大?请说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
大学生小王自主创业,在乡下承包了一块耕地种植某种水果,每季投入2万元,根据以往的经验,每季收获的此种水果能全部售完,且水果的市场价格和这块地上的产量具有随机性,互不影响,具体情况如表:

(1)设表示在这块地种植此水果一季的利润,求的分布列及期望;
(2)在销售收入超过5万元的情况下,利润超过5万元的概率.
当前题号:9 | 题型:解答题 | 难度:0.99
已知袋子中有大小相同的红球1个,黑球2个,从中任取2个.设表示取到红球的个数,则_______,_______.
当前题号:10 | 题型:填空题 | 难度:0.99