- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是
.
(1)求这支篮球队首次胜场前已经负了两场的概率;
(2)求这支篮球队在6场比赛中恰好胜了3场的概率;
(3)求这支篮球队在6场比赛中胜场数的期望和方差.

(1)求这支篮球队首次胜场前已经负了两场的概率;
(2)求这支篮球队在6场比赛中恰好胜了3场的概率;
(3)求这支篮球队在6场比赛中胜场数的期望和方差.
为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,安徽省于2012年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2160度以下(含2160度),执行第一档电价0.5653元/度;第二阶梯电量:年用电量2161至4200度(含4200度),执行第二档电价0.6153元/度;第三阶梯电量:年用电量4200度以上,执行第三档电价0.8653元/度.
某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:
(Ⅰ)试计算表中编号为10的用电户本年度应交电费多少元?
(Ⅱ)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列与期望;
(Ⅲ)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到
户用电量为第一阶梯的可能性最大,求
的值.
某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:
用户编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年用电量(度) | 1000 | 1260 | 1400 | 1824 | 2180 | 2423 | 2815 | 3325 | 4411 | 4600 |
(Ⅰ)试计算表中编号为10的用电户本年度应交电费多少元?
(Ⅱ)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列与期望;
(Ⅲ)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到


2017年9月,国务院发布了《关于深化考试招生制度改革的实施意见》.某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科.每个考生,英语、语文、数学三科为必考科目,并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考.物理、化学、生物为自然科学科目,政治、历史、地理为社会科学科目.假设某位考生选考这六个科目的可能性相等.
(1)求他所选考的三个科目中,至少有一个自然科学科目的概率;
(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目.若该考生所选的社会科学科目考试的成绩获
等的概率都是0.8,所选的自然科学科目考试的成绩获
等的概率都是0.75,且所选考的各个科目考试的成绩相互独立.用随机变量
表示他所选的三个科目中考试成绩获
等的科目数,求
的分布列和数学期望.
(1)求他所选考的三个科目中,至少有一个自然科学科目的概率;
(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目.若该考生所选的社会科学科目考试的成绩获





下列4个图从左到右位次是四位同学甲、乙、丙、丁的五能评价雷达图:

在从他们四人中选一位发展较全面的学生,则应该选择( )

在从他们四人中选一位发展较全面的学生,则应该选择( )
A.甲 | B.乙 | C.丙 | D.丁 |
甲,乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为
,
,
和
的分布列如下表.

(
)分别求期望
和
.
(
)试对这两名工人的技术水平进行比较.





(



(

(理)某电视台举办的闯关节目共有五关,只有通过五关才能获得奖金,规定前三关若有失败即结束,后两关若有失败再给一次从失败的关开始继续向前闯的机会(后两关总共只有一次机会),已知某人前三关每关通过的概率都是,后两关每关通过的概率都是
.
(1)求该人获得奖金的概率;
(2)设该人通过的关数为X,求随机变量X的分布列及数学期望.
(理)(2017·河南信阳二模)
如图所示,A,B两点由5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P(ξ≥8)=____.
(理)两名学生参加考试,随机变量x代表通过的学生数,其分布列为
x | 0 | 1 | 2 |
P |
那么这两人通过各自考试的概率最小值为 ( )
A.![]() | B.![]() |
C.![]() | D.![]() |
从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),得到如图5的茎叶图,整数位为茎,小数位为叶,如27.1mm的茎为27,叶为1.

(1)试比较甲、乙两种棉花的纤维长度的平均值的大小及方差的大小;(只需写出估计的结论,不需说明理由)
(2)将棉花按纤维长度的长短分成七个等级,分级标准如表:

试分别估计甲、乙两种棉花纤维长度等级为二级的概率;
(3)为进一步检验甲种棉花的其它质量指标,现从甲种棉花中随机抽取4根,记
为抽取的棉花纤维长度为二级的根数,求
的分布列和数学期望.

(1)试比较甲、乙两种棉花的纤维长度的平均值的大小及方差的大小;(只需写出估计的结论,不需说明理由)
(2)将棉花按纤维长度的长短分成七个等级,分级标准如表:

试分别估计甲、乙两种棉花纤维长度等级为二级的概率;
(3)为进一步检验甲种棉花的其它质量指标,现从甲种棉花中随机抽取4根,记

