- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某篮球队对队员进行考核,规则是:①每人进
个轮次的投篮;②每个轮次每人投篮
次,若至少投中
次,则本轮通过,否则不通过。已知队员甲投篮
次投中的概率为
,如果甲各次投篮投中与否互不影响,那么甲
个轮次通过的次数
的期望是()







A.![]() | B.![]() | C.![]() | D.![]() |
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均在35微克/立方米以下空气质量为一级,在35微克/立方米
75微克/立方米之间空气质量为二级,在75微克/立方米以上空气质量为超标.北方某市环保局从2015年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如下图所示(十位为茎,个位为叶).
(1)15天的数据中任取3天的数据,记
表示其中空气质量达到一级的天数,求
的分布列;
(2)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中大约有多少天的空气质量达到一级.


(1)15天的数据中任取3天的数据,记


(2)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中大约有多少天的空气质量达到一级.
某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累积答对3题或打错3题即终止其初赛的比赛:答对3题者直接进入初赛,打错3题者则被淘汰.已知选手甲答对每个问题的概率相同,并且相互之间没有影响,答题连续两次答错的概率为
.
(1)求选手甲可进入决赛的概率.
(2)设选手甲在初赛中答题的个数为
,试求
的分布列,并求
的数学期望.

(1)求选手甲可进入决赛的概率.
(2)设选手甲在初赛中答题的个数为



某超市在元旦期间开展优惠酬宾活动,凡购物满100元可抽奖一次,满200元可抽奖两次…依此类推.抽奖箱中有7个白球和3个红球,其中3个红球上分别标有10元,10元,20元字样.每次抽奖要从抽奖箱中有放回地任摸一个球,若摸到红球,根据球上标注金额奖励现金;若摸到白球,没有任何奖励.
(Ⅰ)一次抽奖中,已知摸中了红球,求获得20元奖励的概率;
(Ⅱ)小明有两次抽奖机会,用
表示他两次抽奖获得的现金总额,写出
的分布列与数学期望.
(Ⅰ)一次抽奖中,已知摸中了红球,求获得20元奖励的概率;
(Ⅱ)小明有两次抽奖机会,用


拋掷2颗骰子,所得点数之和记为ξ,那么ξ=4表示的随机试验结果是
( )
( )
A.2颗都是4点 |
B.1颗是1点,另1颗是3点 |
C.2颗都是2点 |
D.1颗是1点,另1颗是3点,或者2颗都是2点 |
写出下列随机变量可能取的值,并说明随机变量取值所表示的随机试验的结果.
(1)在10件产品中有2件是次品,8件是正品,任取三件,取到正品的个数ξ;
(2)在10件产品中有2件次品,8件正品,每次取一件,取后不放回,直到取到两件次品为止,抽取的次数ξ;
(3)在10件产品中有8件正品,2件次品,每次取一件,取后放回,直到取到两件次品为止,抽取的次数ξ;
(4)在10件产品中有8件正品,2件次品,每次取一件,取后放回,共取5次,取到正品的件数ξ.
(1)在10件产品中有2件是次品,8件是正品,任取三件,取到正品的个数ξ;
(2)在10件产品中有2件次品,8件正品,每次取一件,取后不放回,直到取到两件次品为止,抽取的次数ξ;
(3)在10件产品中有8件正品,2件次品,每次取一件,取后放回,直到取到两件次品为止,抽取的次数ξ;
(4)在10件产品中有8件正品,2件次品,每次取一件,取后放回,共取5次,取到正品的件数ξ.
某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,再随机抽取3人赠送礼品,记这3人中“微信控”的人数为
,试求
的分布列和数学期望.
参考公式:
,其中
.
参考数据:
| 微信控 | 非微信控 | 合计 |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,再随机抽取3人赠送礼品,记这3人中“微信控”的人数为


参考公式:


参考数据:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
在一次体能测试中,某研究院对该地区甲、乙两学校做抽样调查,所得学生的测试成绩如下表所示:

(1)将甲、乙两学校学生的成绩整理在所给的茎叶图中,并分别计算其平均数;

(2)若在乙学校被抽取的10名学生中任选3人检测肺活量,求被抽到的3人中,至少2人成绩超过80分的概率;
(3)以甲学校的体能测试情况估计该地区所有学生的体能情况,则若从该地区随机抽取4名学生,记测试成绩在80分以上(含80分)的人数为
,求
的分布列及期望.

(1)将甲、乙两学校学生的成绩整理在所给的茎叶图中,并分别计算其平均数;

(2)若在乙学校被抽取的10名学生中任选3人检测肺活量,求被抽到的3人中,至少2人成绩超过80分的概率;
(3)以甲学校的体能测试情况估计该地区所有学生的体能情况,则若从该地区随机抽取4名学生,记测试成绩在80分以上(含80分)的人数为


中华民族是一个传统文化丰富多彩的民族,各民族有许多优良的传统习俗,如过大年吃饺子,元宵节吃汤圆,端午节吃粽子,中秋节吃月饼等等,让人们感受到浓浓的节目味道,某家庭过大年时包有大小和外观完全相同的肉馅饺子、蛋馅饺子和素馅饺子,一家4口人围坐在桌旁吃年夜饭,当晚该家庭吃饺子时每盘中混放8个饺子,其中肉馅饺子4个,蛋馅饺子和素馅饺子各2个,若在桌上上一盘饺子大家共同吃,记每个人第1次夹起的饺子中肉馅饺子的个数为
,若每个人各上一盘饺子,记4个人中第1次夹起的是肉馅饺子的人数为
,假设每个人都吃饺子,且每人每次都是随机地从盘中夹起饺子.
(1)求随机变量
的分布列;
(2)若
的数学期望分别记为
、
,求
.


(1)求随机变量

(2)若



