- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- + 随机变量及其分布
- 离散型随机变量及其分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;
(Ⅱ)若抽取后不放回,设抽完红球所需的次数为
,求
的分布列及期望.
(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;
(Ⅱ)若抽取后不放回,设抽完红球所需的次数为


在商场付款处排队等候付款的人数及其概率如下:
则至少有两人排队的概率是( )
排队人数 | 0 | 1 | 2 | 3 | 4 | 5人以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
则至少有两人排队的概率是( )
A.0.9 | B.0.74 | C.0.56 | D.0.26 |
“低碳经济”是促进社会可持续发展的推进器,某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为
,
,
;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a和b(其中a+b=1).
(1)如果把100万元投资“传统型”经济项目,用ξ表示投资收益(投资收益=回收资金﹣投资资金),求ξ的概率分布及均值(数学期望)E(ξ);
(2)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围.



(1)如果把100万元投资“传统型”经济项目,用ξ表示投资收益(投资收益=回收资金﹣投资资金),求ξ的概率分布及均值(数学期望)E(ξ);
(2)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围.
南昌市教育局组织中学生足球比赛,共有实力相当的8支代表队(含有一中代表队,二中代表队)参加比赛,比赛规则如下:
第一轮:抽签分成四组,每组两队进行比赛,胜队进入第二轮,第二轮:将四队分成两组,每组两队进行比赛,胜队进入第三轮,第三轮:两队进行决赛,胜队获得冠军.现记ξ=0表示整个比赛中一中代表队与二中代表队没有相遇,ξ=i表示恰好在第i轮比赛时一中代表队,二中代表队相遇(i=1,2,3).
(1)求ξ的分布列;
(2)求Eξ.
第一轮:抽签分成四组,每组两队进行比赛,胜队进入第二轮,第二轮:将四队分成两组,每组两队进行比赛,胜队进入第三轮,第三轮:两队进行决赛,胜队获得冠军.现记ξ=0表示整个比赛中一中代表队与二中代表队没有相遇,ξ=i表示恰好在第i轮比赛时一中代表队,二中代表队相遇(i=1,2,3).
(1)求ξ的分布列;
(2)求Eξ.
现有正整数1,2,3,4,5,…,
,一质点从第一个数1出发顺次跳动,质点的跳动步数通过抛掷骰子来决定:骰子的点数小于等于4时,质点向前跳一步;骰子的点数大于4时,质点向前跳两步.
(I)若抛掷骰子二次,质点到达的正整数记为
,求
;
(II)求质点恰好到达正整数5的概率.

(I)若抛掷骰子二次,质点到达的正整数记为


(II)求质点恰好到达正整数5的概率.
某学校在一次庆祝活动中组织了一场知识竞赛,该竞赛设有三轮,前两轮各有四题,只有答正确其中三题,才能进入下一轮,否则将被淘汰.最后第三轮有三题,这三题都答对的同学获得奖金
元.某同学参与了此次知识竞赛,且该同学前两轮每题答正确的概率均为
,第三轮每题答正确的概率
,各题正确与否互不影响.在竞赛过程中,该同学不放弃所有机会.
(1)求该同学能进入第三轮的概率;
(2)求该同学获得
元奖金的概率.



(1)求该同学能进入第三轮的概率;
(2)求该同学获得

现有A,B两个项目,投资A项目100万元,一年后获得的利润为随机变量X1(万元),根据市场分析,X1的分布列为:
投资B项目100万元,一年后获得的利润X2(万元)与B项目产品价格的调整(价格上调或下调)有关,已知B项目产品价格在一年内进行2次独立的调整,且在每次调整中价格下调的概率都是p(0≤p<1).
经专家测算评估B项目产品价格的下调与一年后获得相应利润的关系如下表:
(Ⅰ)求X1的方差D(X1);
(Ⅱ)求X2的分布列;
(Ⅲ)若p=0.3,根据投资获得利润的差异,你愿意选择投资哪个项目?
(参考数据:1.22×0.49+0.72×0.42+9.82×0.09=9.555).
X1 | 12 | 11.8 | 11.7 |
P | ![]() | ![]() | ![]() |
投资B项目100万元,一年后获得的利润X2(万元)与B项目产品价格的调整(价格上调或下调)有关,已知B项目产品价格在一年内进行2次独立的调整,且在每次调整中价格下调的概率都是p(0≤p<1).
经专家测算评估B项目产品价格的下调与一年后获得相应利润的关系如下表:
B项目产品价格一年内下调次数X(次) | 0 | 1 | 2 |
投资100万元一年后获得的利润X2(万元) | 13 | 12.5 | 2 |
(Ⅰ)求X1的方差D(X1);
(Ⅱ)求X2的分布列;
(Ⅲ)若p=0.3,根据投资获得利润的差异,你愿意选择投资哪个项目?
(参考数据:1.22×0.49+0.72×0.42+9.82×0.09=9.555).
假设某次数学测试共有20道选择题,每个选择题都给了4个选项(其中有且仅有一个是正确的)。评分标准规定:每题只选1项,答对得5分,否则得0分。某考生每道题都给出了答案,并且会做其中的12道题,其他试题随机答题,则他的得分X的方差DX=