- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- + 随机变量及其分布
- 离散型随机变量及其分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设两个独立事件A和B都不发生的概率为
,A发生B不发生的概率和B发生A不发生的概率相同,则事件A发生的概率P(A)等于( )

A.![]() | B.![]() |
C.![]() | D.![]() |
8个互不相同的小球中,有5个红球,3个白球,现在不放回地依次摸出2个球,在第一次摸出白球的条件下,第二次也摸出白球的概率是______.
已知某同学投篮投中的概率为
,现该同学要投篮3次,且每次投篮结果相互独立,则恰投中两次的概率为:_____________;记X为该同学在这3次投篮中投中的次数,则随机变量X的数学期望为____________.

某班有48名学生,一次考试后的数学成绩服从正态分布(注:
)平均分为110,标准差为10,理论上说在110分到120分的人数是( )

A.8 | B.16 | C.20 | D.32 |
某城市为鼓励人们乘坐地铁出行,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过30站的地铁票价如下表:
现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过30站,甲、乙乘坐不超过10站的概率分别为
,
;甲、乙乘坐超过20站的概率分别为
,
.
(Ⅰ)求甲、乙两人付费相同的概率;
(Ⅱ)设甲、乙两人所付费用之和为随机变量
,求
的分布列和数学期望.
乘坐站数![]() | ![]() | ![]() | ![]() |
票价(元) | 3 | 6 | 9 |
现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过30站,甲、乙乘坐不超过10站的概率分别为




(Ⅰ)求甲、乙两人付费相同的概率;
(Ⅱ)设甲、乙两人所付费用之和为随机变量

