- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- + 随机变量及其分布
- 离散型随机变量及其分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设甲、乙两人每次射击命中目标的概率分别为
和
,且各次射击相互独立,若按甲、乙、甲、乙的次序轮流射击,直到有一人击中目标就停止射击,则停止射击时,甲射击了两次的概率是


A.![]() | B.![]() | C.![]() | D.![]() |
一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
一个袋中装有10个大小相同的黑球、白球和红球.已知从袋中任意摸出2个球,至少得到一个白球的概率是
,则袋中的白球个数为_____,若从袋中任意摸出3个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ=_____.

高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.

(Ⅰ)理论上,小球落入4号容器的概率是多少?
(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为
,求
的分布列与数学期望.

(Ⅰ)理论上,小球落入4号容器的概率是多少?
(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为


某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.8,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.
甲、乙、丙三名射击运动员射中目标的概率分别为



(1)求

(2)在概率




箱中装有4个白球和
个黑球.规定取出一个白球得2分,取出一个黑球得1分,现从箱中任取3个球,假设每个球被取出的可能性都相等.记随机变量
为取出的3个球所得分数之和.
(1)若
,求
的值;
(2)当
时,求
的分布列.


(1)若


(2)当

