- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 几何概型-长度型
- + 几何概型-面积型
- 几何概型-体积型
- 可化为面积型的几何概型
- 几何概型-角度型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
欧阳修《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm的圆面,中间有边长为1 cm的正方形孔,若你随机向铜钱上滴一滴油,则油正好落入孔中的概率为_____.(油滴的大小忽略不计)
如图所示,正六边形ABCDEF中,线段AD与线段BE交于点G,圆O1,O2分别是△ABG与△DEG的内切圆,圆O3,O4分别是四边形BCDG与四边形AGEF的内切圆,则往六边形ABCDEF中任意投掷一点,该点落在图中阴影区域内的概率为_________.

如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影).设直角三角形有一内角为30°,若向弦图内随机抛掷1000颗米粒(大小忽略不计),则落在小正方形(阴影)内的米粒数大约为( )


A.134 | B.866 | C.300 | D.500 |
如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,已知菱形ABCD是由等边△ABD与等边△BCD拼接而成,两个小圆与△ABD以及△BCD分别相切,则往菱形ABCD内投掷一个点,该点落在阴影部分内的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
已知
为正方形,其内切圆
与各边分别切于
,
,
,
,连接
,
,
,
.现向正方形
内随机抛掷一枚豆子,记事件
:豆子落在圆
内,事件
:豆子落在四边形
外,则
( )


















A.![]() | B.![]() | C.![]() | D.![]() |