- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 几何概型-长度型
- + 几何概型-面积型
- 几何概型-体积型
- 可化为面积型的几何概型
- 几何概型-角度型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《周髀算经》是中国最古老的天文学和数学著作,是算经十书之一,书中不仅记载了“天圆如张盖,地方如棋局”一说,更是记载了借助“外圆内方“的钱币及用统计概率得到圆周率
的近似值的方法,具体做法如下,现有“外圆内方”的钱币(如图),测得钱币“外圆”半径(即圆的半径)为2cm,“内方”(即钱币中间的正方形孔)的边长为1cm,在圆内随机取点,若统计得到此点取“内方”之外部分的概率是p,则圆周率
的近似值为________.





古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段
分为两线段
,使得其中较长的一段
是全长
与另一段的比例中项,即满足
.后人把这个数称为黄金分割数,把点
称为线段
的黄金分割点.在
中,若点
为线段
的两个黄金分割点,在
内任取一点
,则点
落在
内的概率为( )
















A.![]() | B.![]() | C.![]() | D.![]() |
一个游戏转盘上有四种颜色:红、黄、蓝、黑,并且它们所占面积的比为6∶2∶1∶4,则指针停在红色或蓝色的区域的概率为()
A.![]() | B.![]() | C.![]() | D.![]() |
下列关于概率和统计的几种说法:①10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为
,中位数为
,众数为
,则
,
,
的大小关系为
;②样本4,2,1,0,-2的标准差是2;③在面积为
的
内任选一点
,则随机事件“
的面积小于
”的概率为
;④从写有0,1,2,…,9的十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同的概率是
.其中正确说法的序号有______.














如图所示的长方形内,两个半圆均以长方形的一边为直径且与对边相切,在长方形内随机取一点,则此点取自阴影部分的概率是( )


A.![]() | B.![]() | C.![]() | D.![]() |
割补法在我国古代数学著作中称为“出入相补”,刘徽称之为“以盈补虚”,即以多余补不足,是数量的平均思想在几何上的体现.下图揭示了刘徽推导三角形面积公式的方法.在
内任取一点,则该点落在标记“盈”的区域的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |