- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 几何概型的特征
- + 几何概型计算公式
- 几何概型-长度型
- 几何概型-面积型
- 几何概型-体积型
- 可化为面积型的几何概型
- 几何概型-角度型
- 均匀随机数的产生
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知△ABC的两边AB=4,AC=7,D点为边BC上一点,且AD平分∠BAC,现随机将一粒豆子撒在△ABC内,则豆子落在△ABD内的概率是_____.
赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设
,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )



A.![]() | B.![]() | C.![]() | D.![]() |
(2018·安徽淮南一模)《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内投豆子,则豆子落在其内切圆内的概率是( )
A.![]() | B.![]() |
C.![]() | D.![]() |
如图,选自我国古代数学名著《周髀算经》.图中大正方形边长为5,四个全等的直角三角形围成一个小正方形(阴影部分),直角三角形较长的直角边长为4.若将一质点随机投入大正方形中,则质点落在阴影部分的概率是( ).


A.![]() | B.![]() | C.![]() | D.![]() |
中国剪纸是一种用剪刀或刻刀在纸上剪封花纹,用于装点生活或配合其它民俗活动的民间艺术,蕴含了极致的数学美和丰富的文化信息.下图是一个半径为2个单位的圆形中国剪纸图案,为了测算图中黑色部分的面职,在圆形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分面积是__________.

“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样,为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷2000个点,己知恰有800个点落在阴影部分,据此可估计阴影部分的面积是


A.![]() | B.![]() | C.![]() | D.![]() |
上海地铁
号线早高峰时每隔
分钟一班,其中含列车在车站停留的
分钟,假设乘客到达站台的时刻是随机的,则该乘客到达站台立即能乘上车的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |