刷题首页
题库
高中数学
题干
赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设
,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-01-11 11:03:21
答案(点此获取答案解析)
同类题1
如图,矩形
的四个顶点
正弦曲线
和余弦曲线
在矩形
内交于点F,向矩形
区域内随机投掷一点,则该点落在阴影区域内的概率是()
A.
B.
C.
D.
同类题2
定义:
在区域
内任取一点
,则点
满足
的概率为( )
A.
B.
C.
D.
同类题3
如图一铜钱的直径为
毫米,穿径(即铜钱内的正方形小孔边长)为
毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为
A.
B.
C.
D.
同类题4
如图,一铜钱的直径为32毫米,穿径(即铜钱内的正方形小孔边长)为8毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米落在铜钱的正方形小孔内的概率为________.
同类题5
如图,若在矩形
中随机撒一粒豆子,则豆子落在图中阴影部分的概率为( )
A.
B.
C.
D.
相关知识点
计数原理与概率统计
概率
几何概型
几何概型计算公式
几何概型-面积型