- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- 古典概型
- + 几何概型
- 几何概型的特征
- 几何概型计算公式
- 均匀随机数的产生
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知菱形ABCD中,CD= 4,ÐBCD = 120°,分别以A、B、C、D为圆心,2为半径作圆,得到的图形如下图所示,若往菱形内投掷10000个点,则落在阴影部分内的点约有________________个.(
取
)




“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长、面积以及圆周率的基础.刘徽把圆内接正多边形的面积一直算到了正3 072边形,并由此而求得了圆周率为3.141 5和3.141 6这两个近似数值.这个结果是当时世界上圆周率计算的最精确的数据,如果按π=3.142计算,那么当分割到圆内接正六边形时,如图所示,向圆内随机投掷一点,那么该点不落在正六边形内的概率为(
,精确到小数点后两位)( )



A.0.16 | B.0.17 | C.0.18 | D.0.19 |
(安徽省合肥一中、马鞍山二中等六校教育研究会2018届高三上学期第一次联考)如图所示,在平面直角坐标系内,四边形
为正方形且点
坐标为
.抛物线
的顶点在原点,关于
轴对称,且过点
.在正方形
内随机取一点
,则点
在阴影区域内的概率为_________.










已知
,A是由直线x=1,y=0和曲线y=x4所围成的曲边三角形的平面区域,若向平面区域Ω内随机投一点M,则点M落在区域A内的概率为________.

如图所示,在长方体ABCDA1B1C1D1中,E,H分别是棱A1B1,D1C1上的点(点E与B1不重合),且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,
A.若AB=2AA1=2a,EF=a,B1E=B1F,在长方体ABCDA1B1C1D1内随机选取一点,则该点取自于几何体A1ABFED1DCGH内的概率为( )![]() | |||
B.![]() | C.![]() | D.![]() | E.![]() |
某广播电台只在每小时的整点和半点开始播送新闻,时长均为5分钟,则一个人在不知道时间的情况下打开收音机收听该电台,能听到新闻的概率是



A.![]() | B.![]() | C.![]() | D.![]() |
如图,边长为a的正三角形内有三个半径相同的圆,这三个圆分别与正三角形的其中两边相切,且相邻的两个圆互相外切,则在正三角形内任取一点,该点恰好落在阴影部分的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |