- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- + 古典概型
- 基本事件
- 古典概型的特征
- 整数值随机数
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2021年福建省高考实行“
”模式.“
”模式是指:“3”为全国统考科目语文、数学、外语,所有学生必考;“1”为首选科目,考生须在高中学业水平考试的物理、历史科目中选择1科;“2”为再选科目,考生可在化学、生物、政治、地理4个科目中选择2科,共计6个考试科目.
(1)若学生甲在“1”中选物理,在“2”中任选2科,求学生甲选化学和生物的概率;
(2)若学生乙在“1”中任选1科,在“2”中任选2科,求学生乙不选政治但选生物的概率.


(1)若学生甲在“1”中选物理,在“2”中任选2科,求学生甲选化学和生物的概率;
(2)若学生乙在“1”中任选1科,在“2”中任选2科,求学生乙不选政治但选生物的概率.
第28届金鸡百花电影节将在福建省厦门市举办,近日首批影展片单揭晓,《南方车站的聚会》《春江水暖》《第一次的离别》《春潮》《抵达之谜》五部优秀作品将在电影节进行展映.若从这五部作品中随机选择两部放在展映的前两位,则《春潮》与《抵达之谜》至少有一部被选中的概率为_____.
在高一某班的元旦文艺晚会中,有这么一个游戏:一盒子内装有6张大小和形状完全相同的卡片,每张卡片上写有一个成语,它们分别为意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,从盒内随机抽取2张卡片,若这2张卡片上的2个成语有相同的字就中奖,则该游戏的中奖率为________.
已知某路段最高限速60 km/h,电子监控测得连续6辆汽车的速度用茎叶图表示如图所示(单位:km/h),若从中任抽取2辆汽车,则恰好有1辆汽车超速的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
已知关于x的一元二次函数f(x)=ax2﹣2bx+8.
(1)设集合P={1,2,3}和Q={2,3,4,5},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间(﹣∞,2]上有零点且为减函数的概率?
(2)设集合P=[1,3]和Q[2,5],分别从集合P和Q中随机取一个实数作为a和b,求函数y=f(x)在区间(﹣∞,2]上有零点且为减函数的概率?
(1)设集合P={1,2,3}和Q={2,3,4,5},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间(﹣∞,2]上有零点且为减函数的概率?
(2)设集合P=[1,3]和Q[2,5],分别从集合P和Q中随机取一个实数作为a和b,求函数y=f(x)在区间(﹣∞,2]上有零点且为减函数的概率?
某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标值为
,当
时,产品为一级品;当
时,产品为二级品;当
时,产品为三级品.现用两种新配方(分别称为
配方和
配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
配方的频数分布表
配方的频数分布表
(1)从
配方生产的产品中按等级分层抽样抽取5件产品,再从这5件产品中任取3件,求恰好取到1件二级品的频率;
(2)若这种新产品的利润率
与质量指标
满足如下条件:
,其中
,请分别计算两种配方生产的产品的平均利润率,如果从长期来看,你认为投资哪种配方的产品平均利润率较大?







指标值分组 | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 30 | 40 | 20 |

指标值分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 5 | 10 | 15 | 30 | 40 |
(1)从

(2)若这种新产品的利润率




某书店今年5月上架10种新书,且它们的首月销量(单位:册)情况为:100,50,100,150,150,100,150,50,100,100,频率为概率,解答以下问题:
(1)若该书店打算6月上架某种新书,估计它首月销量至少为100册的概率;
(2)若某种最新出版的图书订购价为10元/册,该书店计划首月内按12元/册出售,第二个月起按8元/册降价出售,降价后全部存货可以售出.试确定,该书店订购该图书50册,100册,还是150册有利于获得更多利润?
(1)若该书店打算6月上架某种新书,估计它首月销量至少为100册的概率;
(2)若某种最新出版的图书订购价为10元/册,该书店计划首月内按12元/册出售,第二个月起按8元/册降价出售,降价后全部存货可以售出.试确定,该书店订购该图书50册,100册,还是150册有利于获得更多利润?
将4名交警随机分配到三个不同路口疏导交通.
(1)求每个路口都至少分配到一名交警的概率;
(2)若将随机分配到路口甲的人数记为
,求随机变量
的分布列和期望.
(1)求每个路口都至少分配到一名交警的概率;
(2)若将随机分配到路口甲的人数记为

