- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- + 利用互斥事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
口袋中有若干红球、黄球与蓝球,从中摸出一个球,摸出红球的概率为0.5,摸出红球或黄球的概率为0.65,则摸出红球或蓝球的概率为___ .
学校足球赛决赛计划在周三、周四、周五三天中的某一天进行,如果这一天下雨则推迟至后一天,如果这三天都下雨则推迟至下一周,已知这三天下雨的概率均为
,则这周能进行决赛的概率为

A.![]() | B.![]() | C.![]() | D.![]() |
依据黄河济南段8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示:依据济南的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.

(I)以此频率作为概率,试估计黄河济南段在8月份发生I级灾害的概率;
(Ⅱ)黄河济南段某企业,在3月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.
现此企业有如下三种应对方案:

试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.

(I)以此频率作为概率,试估计黄河济南段在8月份发生I级灾害的概率;
(Ⅱ)黄河济南段某企业,在3月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.
现此企业有如下三种应对方案:

试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.
根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为( ).
A.0.65 | B.0.55 | C.0.35 | D.0.75 |
已知口袋内装有一些大小相同的红球、黄球、白球,从中摸出一个球,摸出红球的概率为0.4,摸出黄球的概率为0.35,则摸出白球的概率是_____ .
(12分)近期世界各国军事演习频繁,某国一次军事演习中,空军同时出动了甲、乙、丙三架不同型号的战斗机对一目标进行轰炸,已知甲击中目标的概率是
;甲、丙同时轰炸一次,目标未被击中的概率是
;乙、丙同时轰炸一次都击中目标的概率是
.
(Ⅰ)求乙、丙各自击中目标的概率.(Ⅱ)求目标被击中的概率.



(Ⅰ)求乙、丙各自击中目标的概率.(Ⅱ)求目标被击中的概率.
(2015秋•邢台期末)从装有3个红球和2个黑球的口袋内任取2个球,那么对立的两个事件是( )
A.至少有1个黑球与都是红球 |
B.至少有1个黑球与都是黑球 |
C.至少有1个黑球与至少有1个红球 |
D.恰有1个黑球与恰有2个黑球 |
为了响应学校“学科文化节”活动,数学组举办一场数学知识竞赛,共分为甲乙两组,其中甲组得满分的有1个女生和3个男生,乙组得满分的有2个女生和4个男生,现从得满分的学生中,每个组任选2个学生,作为数学组的活动代言人.
(1)求选出的4个学生中恰有1个女生的概率;
(2)设
为选出的4人学生中女生的人数,求
的分布列和数学期望.
(1)求选出的4个学生中恰有1个女生的概率;
(2)设

