- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- + 利用互斥事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在“六一”联欢会上设有一个抽奖游戏.抽奖箱中共有12张纸条,分一等奖、二等奖、三等奖、无奖四种.从中任取一张,不中奖的概率为
,中二等奖或三等奖的概率是
.
(Ⅰ)求任取一张,中一等奖的概率;
(Ⅱ)若中一等奖或二等奖的概率是
,求任取一张,中三等奖的概率.


(Ⅰ)求任取一张,中一等奖的概率;
(Ⅱ)若中一等奖或二等奖的概率是

某超市随机选取
位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买
中商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?

![]() | 甲 | 乙 | 丙 | 丁 |
![]() | √ | × | √ | √ |
![]() | × | √ | × | √ |
![]() | √ | √ | √ | × |
![]() | √ | × | √ | × |
85 | √ | × | × | × |
![]() | × | √ | × | × |
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买

(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?
某中学校本课程开设了A、B、C、D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生:
(Ⅰ)求这3名学生选修课所有选法的总数;
(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率;
(Ⅲ)求A选修课被这3名学生选择的人数
的分布列 .
(Ⅰ)求这3名学生选修课所有选法的总数;
(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率;
(Ⅲ)求A选修课被这3名学生选择的人数

某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则抽查一件产品抽得正品的概率为()
A.0.09 | B.0.98 | C.0.97 | D.0.96 |
一枚硬币连掷三次,事件A为“三次反面向上”,事件B为“恰有一次正面向上”,事件C为“至少两次正面向上”,则P(A)+P(B)+P(C)=__________________ .
有三箱粉笔,每箱中有100盒,其中有一盒是次品,从这三箱粉笔中各抽出一盒,则这三盒中至少有一盒是次品的概率是( )
A.0.01×0.992 | B.0.012×0.99 |
C.![]() | D.1-0.993 |
某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为
.现有10件产品,其中6件是一等品,4件是二等品.
(1)随机选取1件产品,求能够通过检测的概率;
(2)随机选取3件产品,其中一等品的件数记为
,求
的分布列及数学期望..

(1)随机选取1件产品,求能够通过检测的概率;
(2)随机选取3件产品,其中一等品的件数记为


将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
高一军训时,某同学射击一次,命中10环,9环,8环的概率分别为0.13,0.28,0.31.
(1)求射击一次,命中10环或9环的概率;
(2)求射击一次,至少命中8环的概率;
(3)求射击一次,命中环数小于9环的概率.
(1)求射击一次,命中10环或9环的概率;
(2)求射击一次,至少命中8环的概率;
(3)求射击一次,命中环数小于9环的概率.
从含有两件正品
,
和一件次品
的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为






A.![]() | B.![]() | C.![]() | D.![]() |