- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- + 利用互斥事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某企业为了增加某种产品的生产能力,决定改造原有生产线,需一次性投资300万元,第一年的年生产能力为300吨,随后以每年40吨的速度逐年递减,根据市场调查与预测,该产品的年销售量的频率分布直方图如图所示,该设备的使用年限为3年,该产品的销售利润为1万元
吨.
1
根据年销售量的频率分布直方图,估算年销量的平均数
同一组中的数据用该组区间的中点值作代表
;
2
将年销售量落入各组的频率视为概率,各组的年销售量用该组区间的中点值作年销量的估计值,并假设每年的销售量相互独立.
根据频率分布直方图估计年销售利润不低于180万的概率和不低于220万的概率;
试预测该企业3年的总净利润
年的总净利润
年销售利润一投资费用














在某公司举行的一次真假游戏的有奖竞猜中,设置了“科技”和“生活”这两类试题,规定每位职工最多竞猜3次,每次竞猜的结果相互独立.猜中一道“科技”类试题得4分,猜中一道“生活”类试题得2分,两类试题猜不中的都得0分.将职工得分逐次累加并用X表示,如果X的值不低于4分就认为通过游戏的竞猜,立即停止竞猜,否则继续竞猜,直到竞猜完3次为止.竞猜的方案有以下两种:方案1:先猜一道“科技”类试题,然后再连猜两道“生活”类试题;
方案2:连猜三道“生活”类试题.
设职工甲猜中一道“科技”类试题的概率为0.5,猜中一道“生活”类试题的概率为0.6.
(1)你认为职工甲选择哪种方案通过竞猜的可能性大?并说明理由.
(2)职工甲选择哪一种方案所得平均分高?并说明理由.
方案2:连猜三道“生活”类试题.
设职工甲猜中一道“科技”类试题的概率为0.5,猜中一道“生活”类试题的概率为0.6.
(1)你认为职工甲选择哪种方案通过竞猜的可能性大?并说明理由.
(2)职工甲选择哪一种方案所得平均分高?并说明理由.
在抛掷一颗骰子的试验中,事件
表示“不大于4的偶数点出现”,事件
表示“小于5的点数出现”,则事件
发生的概率为________ (
表示
的对立事件).





口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是
,摸出白球的概率是
,那么摸出黑球的概率是( )


A.![]() | B.![]() |
C.![]() | D.![]() |
在10件产品中,有3件一等品,4件二等品,3件三等品.从这10件产品中任取3件.求:
(1)取出的3件产品中一等品件数
的分布列;
(2)取出的3件产品中一等品件数多于二等品件数的概率.
(1)取出的3件产品中一等品件数

(2)取出的3件产品中一等品件数多于二等品件数的概率.
投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
泗县一中为鼓励家校互动,与当地电信公司合作,为教师办理流量套餐.为了解该校教师手机流量使用情况.通过抽样,得到100位教师近2年每人手机月平均使用流量
(单位:
)的数据,其频率分布直方图如下:

若将每位教师的手机月平均使用流量分别视为其手机月使用流量,并将频率为概率,回答以下问题.
(1)从该校教师中随机抽取4人,求这4人中至多有1人月使用流量不超过
的概率;
(2)现该通讯商推出三款流量套餐,详情如下:
这三款套餐都有如下附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值
流量,资费20;如果又超出充值流量,系统就再次自动帮用户充值
流量,资费20元/次,依次类推,如果当月流量有剩余,系统将自动清零,无法转入次月使用.学校欲订购其中一款流量套餐,为教师支付月套餐费,并承担系统自动充值的流量资费的
,其余部分由教师个人承担,问学校订购哪一款套餐最经济?说明理由.



若将每位教师的手机月平均使用流量分别视为其手机月使用流量,并将频率为概率,回答以下问题.
(1)从该校教师中随机抽取4人,求这4人中至多有1人月使用流量不超过

(2)现该通讯商推出三款流量套餐,详情如下:
套餐名称 | 月套餐费(单位:元) | 月套餐流量(单位:![]() |
![]() | 20 | 300 |
![]() | 30 | 500 |
![]() | 38 | 700 |
这三款套餐都有如下附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值



同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为____.
