- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- + 频率与概率
- 计算频率
- 辨析概率与频率的关系
- 用频率估计概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某家具厂为足球比赛场馆生产观众座椅.质检人员对该厂所生产的2500套座椅进行抽检,共抽检了100套,发现有2套次品,则该厂所生产的2500套座椅中大约有______套次品.
从长度分别为
的四条线段中,任取三条的不同取法共有
种,在这些取法中,以取出的三条线段为边可组成的三角形的个数为
,则
等于____________.




任取一个由50名同学组成的班级(称为一个标准班),至少有两位同学生日在同一天(记为事件A)的概率是0.97,则下列说法正确的是______.
①任取一个标准班,事件A发生的可能性是97%;
②任取一个标准班,事件A发生的概率大概是0.97;
③任意取定10000个标准班,其中有9700个班中事件A发生;
④随着抽取的标准班的个数n不断增大,A发生的频率逐渐稳定在0.97,且在它附近摆动.
①任取一个标准班,事件A发生的可能性是97%;
②任取一个标准班,事件A发生的概率大概是0.97;
③任意取定10000个标准班,其中有9700个班中事件A发生;
④随着抽取的标准班的个数n不断增大,A发生的频率逐渐稳定在0.97,且在它附近摆动.
某商店试销某种商品20天,获得如下数据:
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.则当天商店不进货的概率为__________.
日销售量(件) | 0 | 1 | 2 | 3 |
频数 | 1 | 5 | 9 | 5 |
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.则当天商店不进货的概率为__________.
某射击运动员平时训练成绩的统计结果如下:
如果这名运动员只射击一次,以频率作为概率,求下列事件的概率;
(1)命中10环;
(2)命中的环数大于8环;
(3)命中的环数小于9环;
(4)命中的环数不超过5环.
命中环数 | 6 | 7 | 8 | 9 | 10 |
频率 | 0.1 | 0.15 | 0.25 | 0.3 | 0.2 |
如果这名运动员只射击一次,以频率作为概率,求下列事件的概率;
(1)命中10环;
(2)命中的环数大于8环;
(3)命中的环数小于9环;
(4)命中的环数不超过5环.
一鲜花店一个月(30天)某种鲜花的日销售量与销售天数统计如下:
将日销售量落入各组区间的频率视为概率.
(1)试求这30天中日销售量低于100枝的概率;
(2)若此花店在日销售量低于100枝的6天中选择2天作促销活动,求这2天的日销售量都低于50枝的概率(不需要枚举基本事件).
日销售量(枝) | 0~49 | 50~99 | 100~149 | 150~199 | 200~250 |
销售天数(天) | 3天 | 3天 | 15天 | 6天 | 3天 |
将日销售量落入各组区间的频率视为概率.
(1)试求这30天中日销售量低于100枝的概率;
(2)若此花店在日销售量低于100枝的6天中选择2天作促销活动,求这2天的日销售量都低于50枝的概率(不需要枚举基本事件).
一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000辆汽车,时间是从某年的5月1日到下一年的5月1日,共发现有600辆汽车的挡风玻璃破碎,则一辆汽车在一年时间里挡风玻璃破碎的概率近似为_____.
为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上不影响其存活的记号,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量.
从一堆苹果中任取10只,称得它们的质量如下(单位:克)
125 120 122 105 130 114 116 95 120 134,则样本数据落在[114.5,124.5)内的频率为( )
125 120 122 105 130 114 116 95 120 134,则样本数据落在[114.5,124.5)内的频率为( )
A.0.2 | B.0.3 | C.0.4 | D.0.5 |
下列命题中不正确的是( )
A.根据古典概型概率计算公式![]() |
B.根据古典概型试验,用计算机或计算器产生随机整数统计试验次数N和事件A发生的次数![]() ![]() ![]() |
C.频率是随机的,在试验前不能确定,随着试验次数的增加,频率会越来越接近概率 |
D.5张奖券中有一张有奖,甲先抽,乙后抽,那么乙与甲抽到有奖奖券的可性相同 |