- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- + 频率与概率
- 计算频率
- 辨析概率与频率的关系
- 用频率估计概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
用计算机随机模拟掷骰子的试验,估计出现
点的概率,则下列步骤中不正确的是( )

A.用计算机的随机函数![]() ![]() ![]() ![]() ![]() ![]() ![]() |
B.我们通常用计数器![]() ![]() ![]() ![]() ![]() |
C.每做一次试验![]() ![]() ![]() ![]() ![]() ![]() |
D.程序结束,出现![]() ![]() |
在一个不透明的布袋中,红色,黑色,白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球,黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是_________个.
下列叙述随机事件的频率与概率的关系中,说法正确的是( )
A.频率就是概率 | B.频率是随机的,与试验次数无关 |
C.概率是稳定的,与试验次数无关 | D.概率是随机的,与试验次数有关 |
管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出100条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有______条鱼.
以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:

由图可得,该炮兵连这8周中第__________周的命中频率最高.

由图可得,该炮兵连这8周中第__________周的命中频率最高.
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
某市环保局从市区2017年全年每天的PM2.5监测数据中,随机抽取15天的数据作为标本,监测值如茎图所示(十位为茎,个位为叶).

(1)从这15天的数据中任取一天,求这天空气质量达到一级的概率;
(2)从这15天的数据中任取3天的数据,记
表示其中空气质量达到一级的天数,求
的分布列;
(3)以这15天的PM2.5的日均值来估计一年的空气质量情况(一年按360天来计算),则一年中大约有多少天的空气质量达到一级.
某市环保局从市区2017年全年每天的PM2.5监测数据中,随机抽取15天的数据作为标本,监测值如茎图所示(十位为茎,个位为叶).

(1)从这15天的数据中任取一天,求这天空气质量达到一级的概率;
(2)从这15天的数据中任取3天的数据,记


(3)以这15天的PM2.5的日均值来估计一年的空气质量情况(一年按360天来计算),则一年中大约有多少天的空气质量达到一级.
在某区“创文明城区”(简称“创城”)活动中,教委对本区
四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:
(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.
(1)若该区共2000名高中学生,估计
学校参与“创城”活动的人数;
(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;
(3)在上表中从
两校没有参与“创城”活动的同学中随机抽取2人,求恰好
两校各有1人没有参与“创城”活动的概率是多少?

学校 | ![]() | ![]() | ![]() | ![]() |
抽查人数 | 50 | 15 | 10 | 25 |
“创城”活动中参与的人数 | 40 | 10 | 9 | 15 |
(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.
(1)若该区共2000名高中学生,估计

(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;
(3)在上表中从


随着社会的进步,经济的发展,道路上的汽车越来越多,随之而来的交通事故也增多.据有关部门调查,发生车祸的驾驶员中尤其是21 岁以下年轻人所占比例居高,因此交通管理有关部门,对2018 年参加驾照考试的21 岁以下学员随机抽取10 名学员,对他们参加的科目三(道路驾驶)和科目四(安全文明驾驶相关知识)进行两轮现场测试,并把两轮测试成绩的平均分作为该名学员的抽测成绩.记录的数据如下:

(1)从2018年参加驾照考试的21岁以下学员中随机选取一名学员,试估计这名学员抽测成绩大于或等于90分的概率;
(2)根据规定,科目三和科目四测试成绩均达到90分以上(含90)才算测试合格.
(i)从抽测的1号至5号学员中任取两名学员,记
为学员测试合格的人数,求
的分布列和数学期望
;
(ii) 记抽取的10名学员科目三和科目四测试成绩的方差分别为
,
,试比较
与
的大小.

(1)从2018年参加驾照考试的21岁以下学员中随机选取一名学员,试估计这名学员抽测成绩大于或等于90分的概率;
(2)根据规定,科目三和科目四测试成绩均达到90分以上(含90)才算测试合格.
(i)从抽测的1号至5号学员中任取两名学员,记



(ii) 记抽取的10名学员科目三和科目四测试成绩的方差分别为



