- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一批排球中正品有
个,次品有
个,
,从这批排球中每次随机取一个,有放回地抽取10次,
表示抽到的次品个数.若
,从这批排球中随机抽取两个,则至少有一个正品的概率
( )






A.![]() | B.![]() | C.![]() | D.![]() |
抛掷一枚质地均匀的骰子,落地后记事件A为“奇数点向上”,事件B为“偶数点向上”,事件C为“向上的点数是2的倍数”,事件D为“2点或4点向上”。则下列每对事件是互斥但不对立的是( )
A.A与B | B.B与C | C.C与D | D.A与D |
下列说法正确的有( )
①随机事件A的概率是频率的稳定值,频率是概率的近似值.
②一次试验中不同的基本事件不可能同时发生.
③任意事件A发生的概率
总满足
.
④若事件A的概率为0,则A是不可能事件.
①随机事件A的概率是频率的稳定值,频率是概率的近似值.
②一次试验中不同的基本事件不可能同时发生.
③任意事件A发生的概率


④若事件A的概率为0,则A是不可能事件.
A.0个 | B.1个 | C.2个 | D.3个 |
不透明的布袋中有形状、大小都相同的4只球,其中1只白球,1只黄球,2只红球,从中随机摸出2只球,则这两只球颜色不同的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.
(1)求甲射击一次,命中不足8环的概率;
(2)求甲射击一次,至少命中7环的概率.
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)求甲射击一次,命中不足8环的概率;
(2)求甲射击一次,至少命中7环的概率.
下列四个命题:
①对立事件一定是互斥事件;
②若
为两个事件,则
;
③若事件
彼此互斥,则
;
④若事件
满足
,则
是对立事件.
其中错误命题的个数是( )
①对立事件一定是互斥事件;
②若


③若事件


④若事件



其中错误命题的个数是( )
A.0 | B.1 | C.2 | D.3 |
在5件产品中,有3件一等品和2件二等品,从中任取2件,以
为概率的事件是( )

A.恰有1件一等品 | B.至少有一件一等品 |
C.至多有一件一等品 | D.都不是一等品 |
下列事件中,随机事件的个数为( )
①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;
②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;
③从标有1,2,3,4的4张号签中任取一张,恰为1号签;
④在标准大气压下,水在4°C时结冰.
①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;
②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;
③从标有1,2,3,4的4张号签中任取一张,恰为1号签;
④在标准大气压下,水在4°C时结冰.
A.1 | B.2 |
C.3 | D.4 |
某人在一次射击中,命中9环的概率为0.28,命中8环的概率为0.19,不够8环的概率为0.29,则这人在一次射击中命中9环或10环的概率为________ .