- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
从装有2个红球和2个白球的的口袋中任取2个球,那么下列事件中,互斥事件的个数是
①至少有1个白球与都是白球; ②至少有1个白球与至少有1个红球;( )
③恰有1个白球与恰有2个红球; ④至少有1个白球与都是红球。
①至少有1个白球与都是白球; ②至少有1个白球与至少有1个红球;( )
③恰有1个白球与恰有2个红球; ④至少有1个白球与都是红球。
A.0 | B.1 | C.2 | D.3 |
袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:
(1) 取出的两球1个是白球,另1个是红球;
(2) 取出的两球至少一个是白球.
(1) 取出的两球1个是白球,另1个是红球;
(2) 取出的两球至少一个是白球.
高一军训时,某同学射击一次,命中10环,9环,8环的概率分别为0.13,0.28,0.31.
(1)求射击一次,命中10环或9环的概率;
(2)求射击一次,至少命中8环的概率;
(3)求射击一次,命中环数小于9环的概率.
(1)求射击一次,命中10环或9环的概率;
(2)求射击一次,至少命中8环的概率;
(3)求射击一次,命中环数小于9环的概率.
下列说法正确的是( )
A.天气预报说明天下雨的概率为![]() |
B.不可能事件不是确定事件 |
C.统计中用相关系数![]() ![]() |
D.某种彩票的中奖率是![]() |
从高二某班级中抽出三名学生.设事件甲为“三名学生全不是男生”,事件乙为“三名学生全是男生”,事件丙为“三名学生至少有一名是男生”,则( )
A.甲与丙互斥 | B.任何两个均互斥 | C.乙与丙互斥 | D.任何两个均不互斥 |
袋中装有黑、白两种颜色的球各三个,现从中取出两个球.设事件P表示“取出的都是黑球”;事件Q表示“取出的都是白球”;事件R表示“取出的球中至少有一个黑球”.则下列结论正确的是( )
A.P与R是互斥事件 | B.P与Q是对立事件 |
C.Q和R是对立事件 | D.Q和R是互斥事件,但不是对立事件 |
某市的天气预报中,有“降水概率预报”,例如预报“明天降水概率为90%”,这是指( )
A.明天该地区约有90%的地方会降水,其余地方不降水 |
B.明天该地区约90%的时间会降水,其余时间不降水 |
C.气象台的专家中,有90%认为明天会降水,其余的专家认为不降水 |
D.明天该地区降水的可能性为90% |
任意抛两枚一元硬币,记事件
:恰好一枚正面朝上;
:恰好两枚正面朝上;
:恰好两枚正面朝下;
:至少一枚正面朝上;
:至多一枚正面朝上,则下列事件为对立事件的是( )





A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |