- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商场通过转动如图所示的质地均匀的6等分的圆盘进行抽奖活动,当指针指向阴影区域时为中奖.规定每位顾客有3次抽奖机会,但中奖1次就停止抽奖.假设每次抽奖相互独立,则顾客中奖的概率是


A.![]() | B.![]() |
C.![]() | D.![]() |
某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为
、
、
,己知三个社团他都能进入的概率为
,至少进入一个社团的概率为
,且
.
(1)求
与
的值;
(2)该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.






(1)求


(2)该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.
甲射击一次,中靶概率是P1,乙射击一次,中靶概率是P2,已知
是方程x2-5x+6=0的根,且P1满足方程x2-x+
=0.则甲射击一次,不中靶概率为_____;乙射击一次,不中靶概率为_____.


袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( )
A.49 | B.51 |
C.0.49 | D.0.51 |
一个口袋中有若干大小相同的红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为_____.
.为备战第32届夏季奥运会,某射击队统计了平日训练中两名运动员击中10环的次数,如下表:
(1)分别计算出甲、乙两名运动员击中10环的频率;
(2)根据(1)中的数据预测两名运动员在奥运会上击中10环的概率.
射 击 次 数 | 10 | 20 | 50 | 100 | 200 | 500 |
甲击中10环的次数 | 9 | 17 | 44 | 92 | 179 | 450 |
甲击中10环的频率 | | | | | | |
乙击中10环的次数 | 8 | 19 | 44 | 93 | 177 | 453 |
乙击中10环的频率 | | | | | | |
(1)分别计算出甲、乙两名运动员击中10环的频率;
(2)根据(1)中的数据预测两名运动员在奥运会上击中10环的概率.
某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则( )
A.正面朝上的概率为0.6 |
B.正面朝上的频率为0.6 |
C.正面朝上的频率为6 |
D.正面朝上的概率接近于0.6 |
.某个地区从某年起n年内的新生婴儿数及其中男婴数如表所示(单位:个):
(1)填写表中的男婴出生频率(结果保留两位有效数字);
(2)这一地区男婴出生的概率约是_____.
时间范围 | 1年内 | 2年内 | 3年内 | 4年内 |
新生婴儿数 | 5 544 | 9 013 | 13 520 | 17 191 |
男 婴 数 | 2 716 | 4 899 | 6 812 | 8 590 |
男婴出生频率 | | | | |
(1)填写表中的男婴出生频率(结果保留两位有效数字);
(2)这一地区男婴出生的概率约是_____.
某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:
则落在桌面的数字不小于4的频率为_____.
落在桌面的数字 | 1 | 2 | 3 | 4 | 5 |
频 数 | 32 | 18 | 15 | 13 | 22 |
则落在桌面的数字不小于4的频率为_____.
李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来的考试成绩分布:
经济学院一年级的学生王小慧下学期将选修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位).
(1)90分以上;
(2)60~69分;
(3)60分以上.
成绩 | 人数 |
90分以上 | 43 |
80~89分 | 182 |
70~79分 | 260 |
60~69分 | 90 |
50~59分 | 62 |
50分以下 | 8 |
经济学院一年级的学生王小慧下学期将选修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位).
(1)90分以上;
(2)60~69分;
(3)60分以上.