- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从装有红球和绿球的口袋内任取2个球(其中红球和绿球都多于2个),那么互斥而不对立的两个事件是( )
A.至少有一个红球,至少有一个绿球 |
B.恰有一个红球,恰有两个绿球 |
C.至少有一个红球,都是红球 |
D.至少有一个红球,都是绿球 |
把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是( )
A.对立事件 | B.必然事件 |
C.互斥但不对立事件 | D.不可能事件 |
某战士射击一次中靶的概率为0.95,中靶环数大于5的概率为0.75,则中靶环数大于0且小于6的概率为__________.(只考虑整数环数)
现有8名奥运会志愿者,其中志愿者
通晓日语,
通晓俄语,
通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求
被选中的概率;
(2)求
和
不全被选中的概率.



(1)求

(2)求


下面结论正确的是( )
A.若![]() |
B.若![]() |
C.若事件A与B是互斥事件,则A与![]() |
D.若事件A与B是相互独立事件,则A与![]() |
国家教育部规定高中学校每周至少开设两节体育选修课,在一次篮球选修课上,体育老师让同学们练习投篮,其中小化连续投篮两次,事件
“两次投篮至少有一次投篮命中”与事件
“两次投篮都命中”是( )


A.对立事件 | B.互斥但不对立事件 |
C.不可能事件 | D.既不互斥也不对立事件 |
某学校进行足球选拔赛,有甲、乙、丙、丁四个球队,每两队要进行一场比赛,开始记分规则为:胜一场得3分,平一场得1分,负一场得0分,甲胜乙、丙、丁的概率分别是0.5、0.6、0.8,甲负乙、丙、丁的概率分别是0.3、0.2、0.1,最后得分大于等于7胜出,则甲胜出的概率为________.
某人抛一颗质地均匀的骰子,记事件A=“出现的点数为奇数”,B=“出现的点数不大于3”,则下列说法正确的是( )
A.事件A与B对立 | B.![]() |
C.事件A与B互斥 | D.![]() |