- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抽出
件产品进行检验,设事件
:“至少有三件次品”,则
的对立事件为( )



A.至多三件次品 | B.至多二件次品 |
C.至多三件正品 | D.至少三件正品 |
从一批产品中取出三件产品,设
“三件产品全不是次品”,
“三件产品全是次品”,
“三件产品不全是次品”,则下列结论不正确的是__________.①
与
互斥;②
与
互斥;③任何两个均互斥;④任何两个均不互斥.







在新中国成立七十周年之际,赤峰市某中学的数学课题研究小组,在某一个社区设计了一个调查:在每天晚上7:30~10:00共2.5小时内,居民浏览“学习强国”的时间.如果这个社区共有成人按10000人计算,每人每天晚上7:30~10:00期间打开“学习强国APP”的概率均为
(某人在某一时刻打开“学习强国”的概率
,
),并且是否打开进行学习是彼此相互独立的.他们统计了其中100名成人每天晚上浏览“学习强国”的时间(单位:min),得到下面的频数表,以样本中100名成人的平均学习时间作为该社区每个人的学习时间.
(1)试估计
的值;
(2)设
表示这个社区每天晚上打开“学习强国”进行学习的人数.
①求
的数学期望
和方差
;
②若随机变量
满足
,可认为
.假设当
时,表示社区处于最佳的学习氛围,试由此估计,该社区每天晚上处于最佳学习氛围的时间长度(结果保留为整数).
附:若
,则
,
,
.




学习时长/min | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 20 | 40 | 20 | 10 |
(1)试估计

(2)设

①求



②若随机变量




附:若




“
猜想”是指对于每一个正整数
,若
为偶数,则让它变成
;若
为奇数,则让它变成
.如此循环,最终都会变成
,若数字
按照以上的规则进行变换,则变换次数为偶数的频率是( )








A.![]() | B.![]() | C.![]() | D.![]() |
甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白,三种色的球各2个,从两个盒子中各取1个球,求取出的两个球是不同颜色的概率.
某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.04,出现丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________.
为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是________.
从一批产品中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品不全是次品},则下列结论正确的序号是________.
①A与B互斥;②B与C互斥;③A与C互斥;④A与B对立;⑤B与C对立.
①A与B互斥;②B与C互斥;③A与C互斥;④A与B对立;⑤B与C对立.
10月1日,某品牌的两款最新手机(记为
型号,
型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表:
(Ⅰ)若在10月1日当天,从
,
这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为
型号手机的概率;
(Ⅱ)现从这5个手机店中任选3个举行促销活动,用
表示其中
型号手机销量超过
型号手机销量的手机店的个数,求随机变量
的分布列和数学期望;
(III)经测算,
型号手机的销售成本
(百元)与销量(部)满足关系
.若表中
型号手机销量的方差
,试给出表中5个手机店的
型号手机销售成本的方差
的值.(用
表示,结论不要求证明)


手机店 | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | 6 | 6 | 13 | 8 | 11 |
![]() | 12 | 9 | 13 | 6 | 4 |
(Ⅰ)若在10月1日当天,从



(Ⅱ)现从这5个手机店中任选3个举行促销活动,用




(III)经测算,








对以下命题:
①随机事件的概率与频率一样,与试验重复的次数有关;
②抛掷两枚均匀硬币一次,出现一正一反的概率是
;
③若一种彩票买一张中奖的概率是
,则买这种彩票一千张就会中奖;
④“姚明投篮一次,求投中的概率”属于古典概型概率问题.
其中正确的个数是( )
①随机事件的概率与频率一样,与试验重复的次数有关;
②抛掷两枚均匀硬币一次,出现一正一反的概率是

③若一种彩票买一张中奖的概率是

④“姚明投篮一次,求投中的概率”属于古典概型概率问题.
其中正确的个数是( )
A.0 | B.1 | C.2 | D.3 |