在一次“综艺类和体育类节目,哪一类节目受中学生欢迎”的调查中,随机调查了男女各100名学生,其中女同学中有73人更爱看综艺类节目,另外27人更爱看体育类节目;男同学中有42人更爱看综艺类节目,另外58人更爱看体育类节目.
(1)根据以上数据填写如下列联表:
 
综艺类
体育类
总计

 
 
 

 
 
 
总计
 
 
 
 
(2)试判断是否有的把握认为“中学生更爱看综艺类节目还是体育类节目与性别有关”.
参考公式:,其中.
临界值表:

0.025
0.01
0.005
0.001

5.024
6.635
7.879
10.828
 
当前题号:1 | 题型:解答题 | 难度:0.99
某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为类同学),另外250名同学不经常参加体育锻炼(称为类同学),现用分层抽样方法(按类、类分两层)从该年级的学生中共抽取100名同学,如果以身高达作为达标的标准,对抽取的100名学生,得到以下列联表:
 
身高达标
身高不达标
总计
经常参加体育锻炼
40
 
 
不经常参加体育锻炼
 
15
 
总计
 
 
100
 
(Ⅰ)完成上表;
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(的观测值精确到0.001)?

0.050
0.010
0.001

3.841
6.635
10.828
 
当前题号:2 | 题型:解答题 | 难度:0.99
近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重. 大气污染可引起心悸、呼吸困难等心肺疾病。为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如在的列联表:已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(Ⅰ)请将右面的列联表补充完整;
 
患心肺疾病
不患心肺疾病
合计

 
5
 

10
 
 
合计
 
 
50
 
(Ⅱ)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列以及数学期望.
下面的临界值表供参考:   

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(参考公式 其中
当前题号:3 | 题型:解答题 | 难度:0.99
中国神舟十一号载人飞船在酒泉卫星发射中心成功发射,引起全国轰动.开学后,某校高二年级班主任对该班进行了一次调查,发现全班60名同学中,对此事关注的占,他们在本学期期末考试中的物理成绩如下面的频率分布直方图:

(1)求“对此事关注”的同学的物理期末平均分(以各区间的中点代表该区间的均值).
(2)若物理成绩不低于80分的为优秀,请以是否优秀为分类变量,
①补充下面的列联表:
 
物理成绩优秀
物理成绩不优秀
合计
对此事关注
 
 
 
对此事不关注
 
 
 
合计
 
 
 
 
②是否有以上的把握认为“对此事是否关注”与物理期末成绩是否优秀有关系?
参考公式:,其中.
参考数据:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:4 | 题型:解答题 | 难度:0.99
海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:

(1)根据箱产量的频率分布直方图填写下面列联表,从等高条形图中判断箱产量是否与新、旧网箱养殖方法有关;
(2)根据列联表判断是否有99%的把握认为箱产量与养殖方法有关?
 
箱产量<50kg
箱产量≥50kg
旧养殖法
 
 
新养殖法
 
 
 
参考公式:
(1)给定临界值表
P(K)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(2)其中为样本容量.
当前题号:5 | 题型:解答题 | 难度:0.99
为了了解某校学生喜欢吃零食是否与性别有关,随机对此校100人进行调查,得到如下的列表:已知在全部100人中随机抽取1人,抽到不喜欢吃零食的学生的概率为
 
喜欢吃零食
不喜欢吃零食辣
合计
男生
 
10
 
女生
20
 
 
合计
 
 
100
 
(Ⅰ)请将上面的列表补充完整;
(Ⅱ)是否有99.9%以上的把握认为喜欢吃零食与性别有关?说明理由.
下面的临界值表供参考:,其中 

0.010
0.005
0.001

6.635
7.879
10.828
 
当前题号:6 | 题型:解答题 | 难度:0.99
某小学为了解四年级学生的家庭作业用时情况,从本校四年级随机抽取了一批学生进行调查,并绘制了学生作业用时的频率分布直方图,如图所示.

(1)估算这批学生的作业平均用时情况;
(2)作业用时不能完全反映学生学业负担情况,这与学生自身的学习习惯有很大关系如果用时四十分钟之内评价为优异,一个小时以上为一般,其它评价为良好.现从优异和良好的学生里面用分层抽样的方法抽取300人,其中女生有90人(优异20人).请完成列联表,并根据列联表分析能否在犯错误的概率不超过0.05的前提下认为学习习惯与性别有关系?
 
男生
女生
合计
良好
 
 
 
优异
 
 
 
合计
 
 
 
 
附:,其中

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 
当前题号:7 | 题型:解答题 | 难度:0.99
大型活动即将举行,为了做好接待工作,组委会招募了名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余人不喜爱运动.
(1)根据以上数据完成以下列联表:
 
喜爱运动
不喜爱运动
总计
男志愿者
 
 
 
女志愿者
 
 
 
总计
 
 
 
 
(2)根据列联表判断能否有℅的把握认为性别与喜爱运动有关?
下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(参考公式: ,其中)
当前题号:8 | 题型:解答题 | 难度:0.99
某企业有两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从两厂中各随机抽取100件产品统计其质量指标值,得到如下频率分布直方图:

(1)填写列联表,并根据列联表判断有多大的把握认为这两个分厂的产品质量有差异?
 
优质品
非优质品
合计

 
 
 

 
 
 
合计
 
 
 
 
(2)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;
(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.
附:.
 
0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 
当前题号:9 | 题型:解答题 | 难度:0.99
西安市自2017年5月启动对“车不让人行为”处罚以来,斑马线前机动车抢行不文明行为得以根本改变,斑马线前礼让行人也成为了一张新的西安“名片”.
但作为交通重要参与者的行人,闯红灯通行却频有发生,带来了较大的交通安全隐患及机动车通畅率降低,交警部门在某十字路口根据以往的检测数据,得到行人闯红灯的概率约为0.4,并从穿越该路口的行人中随机抽取了200人进行调查,对是否存在闯红灯情况得到列联表如下:
 
30岁以下
30岁以上
合计
闯红灯
 
60
 
未闯红灯
80
 
 
合计
 
 
200
 
近期,为了整顿“行人闯红灯”这一不文明及项违法行为,交警部门在该十字路口试行了对闯红灯行人进行经济处罚,并从试行经济处罚后穿越该路口行人中随机抽取了200人进行调查,得到下表:
处罚金额(单位:元)
5
10
15
20
闯红灯的人数
50
40
20
0
 
将统计数据所得频率代替概率,完成下列问题.
(Ⅰ)将列联表填写完整(不需写出填写过程),并根据表中数据分析,在未试行对闯红灯行人进行经济处罚前,是否有99.9%的把握认为闯红灯与年龄有关;
(Ⅱ)当处罚金额为10元时,行人闯红灯的概率会比不进行处罚降低多少;
(Ⅲ)结合调查结果,谈谈如何治理行人闯红灯现象.
参考公式: ,其中 
参考数据:

0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

1.132
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:10 | 题型:解答题 | 难度:0.99