刷题首页
题库
高中数学
题干
已知两个统计案例如下:
①为了探究患肺炎与吸烟的关系,调查了
名
岁以上的人,调查结果如下表:
患肺炎
未患肺炎
总计
吸烟
43
162
205
不吸烟
13
121
134
总计
56
283
339
②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:
母亲身高(cm)
159
160
160
163
159
154
159
158
159
157
女儿身高(cm)
158
159
160
161
161
155
162
157
162
156
则对这些数据的处理所应用的统计方法是( )
A.①回归分析,②取平均值
B.①独立性检验,②回归分析
C.①回归分析,②独立性检验
D.①独立性检验,②取平均值
上一题
下一题
0.99难度 单选题 更新时间:2019-05-29 08:56:44
答案(点此获取答案解析)
同类题1
为了规定工时定额,需要确定加工零件所花费的时间,为此进行了
次试验,得到
组数据
,
,
,
,
.根据收集到的数据可知
,由最小二乘法求得回归直线方程为
,则
的值为( )
A.
B.
C.
D.
同类题2
已知
的取值如下表所示:
如果
与
呈线性相关,且线性回归方程为:
,则
( )
A.
B.
C.
D.
同类题3
在环境保护部公布的2016年74城市PM2.5月均浓度排名情况中,某14座城市在74城的排名情况如下图所示,甲、乙、丙为某三座城市.
从排名情况看,
① 在甲、乙两城中,2月份名次比1月份名次靠前的城市是_________;
②在第1季度的三个月中,丙城市的名次最靠前的月份是_________.
同类题4
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响,对近8年的年宣传费
和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.
表中
,
.
(1)根据散点图判断,
与
哪一个适宜作为年销售量
关于年宣传费
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程;
(3)已知这种产品的年利润
与
、
的关系为
.根据(2)的结果要求:年宣传费
为何值时,年利润最大?
附:对于一组数据
,
,…,
其回归直线
的斜率和截距的最小二乘估计分别为
,
.
同类题5
登山族为了了解某山高
y
(km)与气温
x
(℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:
气温
x
(℃)
18
13
10
-
1
山高
y
(km)
24
34
38
64
由表中数据,得到线性回归方程
=-
2
x+
∈R),由此估计出山高为72(km)处的气温为_____℃
.
相关知识点
计数原理与概率统计
统计案例
回归分析
线性回归