下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

(Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:
≈2.646.
参考公式:相关系数 
回归方程中斜率和截距的最小二乘估计公式分别为: 
当前题号:1 | 题型:解答题 | 难度:0.99
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.








46.6
563
6.8
289.8
1.6
1469
108.8
 
表中=
(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:
当前题号:2 | 题型:解答题 | 难度:0.99
某生产厂家为了调查某商品的日销售价格(单位:元)对当日销售量(单位:件)的影响,下面给出了5组销售价格与销售量的统计表格:
销售价格(元)
12
13
14
15
16
销售量(件)
90
79
71
61
49
 
用日销售价格x作为解释变量,日销售量y作为预报变量.
(1)根据这组数据,建立yx的回归方程;
(2)如果每件产品的成本价格为9元,根据(1)中所求回归方程,求:当日销售价格x为何值时,日销售利润Q的预报值最大.
附:对一组数据,其回归方程,其中
当前题号:3 | 题型:解答题 | 难度:0.99
近期流感来袭,各个医院的就诊量暴增,患者就诊困难.某医院为了以后患者能尽快就诊,决定组织调查小组来调查昼夜温差与就诊量的关系,以便以后遇到类似情况提前做好应对措施,经调查,12月21日到26日的昼夜温差与流感就诊的人数有如下数据:
昼夜温差(℃)
9
10
11
12
13
14
就座人数(人)
20
24
26
31
33
36
 
调查小组通过散点图发规昼夜温差与就诊人数存在线性相关关系,决定先从这6组数据中选取5组数据求线性回归方程,再用剩下的1组数据进行检验.检验方法如下:先用求得的线性回归方程估计昼夜温差所对应的就诊人数,再求与实际就诊人数的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.
(1)若选取的是前面5组数据,求关于的线性回归方程;
(2)判断(1)中的方程是否是“恰当回归方程”;
(3)为了使就诊等待的时间缩短,医院决定在就诊人数达到30人时增开诊室.那么利用回归方程估计昼夜温差为多少时医院会增开诊室.(温差精确到1℃)
附:参考公式
当前题号:4 | 题型:解答题 | 难度:0.99
有一个同学家开了一个小卖部,他为了研究气温对热饮饮料销售的影响.经过统计,得到一个卖出的热饮杯数与当天气温的散点图和对比表

摄氏温度
—5
4
7
10
15
23
30
36
热饮杯数
162
128
115
135
89
71
63
37
 
(参考公式)
(参考数据).样本中心点为.
(1)从散点图可以发现,各点散布在从左上角到右下角的区域里.因此,气温与当天热饮销售杯数之间成负相关,即气温越高,当天卖出去的热饮杯数越少.统计中常用相关系数来衡量两个变量之间线性关系的强弱.统计学认为,对于变量,如果,那么负相关很强;如果,那么正相关很强;如果,那么相关性一般;如果,那么相关性较弱.请根据已知数据,判断气温与当天热饮销售杯数相关性的强弱.
(2)(i)请根据已知数据求出气温与当天热饮销售杯数的线性回归方程;
ii)记为不超过的最大整数,如.对于(1)中求出的线性回归方程,将视为气温与当天热饮销售杯数的函数关系.已知气温与当天热饮每杯的销售利润的关系是(单位:元),请问当气温为多少时,当天的热饮销售利润总额最大?
当前题号:5 | 题型:解答题 | 难度:0.99
据统计,某地区植被覆盖面积公顷与当地气温下降的度数之间呈线性相关关系,对应数据如下:
公顷
20
40
60
80

3
4
4
5
 
请用最小二乘法求出y关于x的线性回归方程;
根据中所求线性回归方程,如果植被覆盖面积为300公顷,那么下降的气温大约是多少
参考公式:线性回归方程;其中
当前题号:6 | 题型:解答题 | 难度:0.99
基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验.某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:
月份
2017.8
2017.9
2017.10
2017.11
2017.12
2018.1
月份代码x
1
2
3
4
5
6
市 场占有率y(%)
11
13
16
15
20
21
 

(1)请在给出的坐标纸中作出散点图;
(2)求y关于x的线性回归方程,并预测该公司2018年2月份的市场占有率;
参考公式:回归直线方程为   其中:,
当前题号:7 | 题型:解答题 | 难度:0.99
(2017·深圳二模)在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和. 
x(个)
2
3
4
5
6
y(百万元)
2.5
3
4
4.5
6
 
(1)该公司已经过初步判断,可用线性回归模型拟合yx的关系,求y关于x的线性回归方程;
(2)假设该公司在A区获得的总年利润z(单位:百万元)与xy之间的关系为zy-0.05x2-1.4,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
参考公式:
当前题号:8 | 题型:解答题 | 难度:0.99
某企业为确定下一年度投入某种产品的生产所需的资金,需了解每投入2千万资金后,工人人数(单位:百人)对年产能(单位:千万元)的影响,对投入的人力和年产能的数据作了初步处理,得到散点图和统计量表.


















 

(1)根据散点图判断:哪一个适宜作为年产能关于投入的人力的回归方程类型?并说明理由?
(2)根据(1)的判断结果及相关的计算数据,建立关于的回归方程;
(3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?
附注:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为,(说明:的导函数为)
当前题号:9 | 题型:解答题 | 难度:0.99
已知某商品价格(元)和销量(件)之间的关系如下表:

2
3
4
5
6

5
4
3
2
1
 
(1)求回归直线方程;
(2)根据预报当元时的值.参考公式:回归方程斜率,截距估计值
当前题号:10 | 题型:解答题 | 难度:0.99