- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数据的极差、方差、标准差
- 根据方差、标准差求参数
- 各数据同时加减同一数对方差的影响
- 各数据同时乘除同一数对方差的影响
- 用方差、标准差说明数据的波动程度
- 估计总体的方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
大双和小双两兄弟同时参加驾考,在进行科目一考试前,两兄弟在网上同时进行了5次模拟测试,他们每一次的成绩统计如下表:

分别表示大双和小双两兄弟模拟测试成绩的平均数,
分别表示大双和小双两兄弟模拟测试成绩的方差,则有( )



A.![]() | B.![]() | C.![]() | D.![]() |
下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和一个最低分后,所剩数据的平均值为_________,方差为________.

某市对所有高校学生进行普通话水平测试,发现成绩服从正态分布N(μ,σ2),下表用茎叶图列举出来抽样出的10名学生的成绩.

(1)计算这10名学生的成绩的均值和方差;
(2)给出正态分布的数据:P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.
由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.

(1)计算这10名学生的成绩的均值和方差;
(2)给出正态分布的数据:P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.
由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.
甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表,s1、s2、s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则s1、s2、s3的大小关系是_________.
甲的成绩 | 乙的成绩 | 丙的成绩 | ||||||||||||
环数 | 7 | 8 | 9 | 10 | 环数 | 7 | 8 | 9 | 10 | 环数 | 7 | 8 | 9 | 10 |
频数 | 5 | 5 | 5 | 5 | 频数 | 6 | 4 | 4 | 6 | 频数 | 4 | 6 | 6 | 4 |
下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B为互斥事件,但不是对立事件;
③某校高三(1)班和高三(2)班的人数分别是m,n,若一模考试数学平均分分别是a,b,则这两个班的数学平均分为
;
④如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行或相交.
其中真命题的序号是__________ .
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B为互斥事件,但不是对立事件;
③某校高三(1)班和高三(2)班的人数分别是m,n,若一模考试数学平均分分别是a,b,则这两个班的数学平均分为

④如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行或相交.
其中真命题的序号是
手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间。
为了解A,B两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A,B两个型号的手机各5台,在相同条件下进行测试,统计结果如下:
已知A,B两个型号被测试手机待机时间的平均值相等。
(Ⅰ)求a的值;
(Ⅱ)求A型号被测试手机待机时间方差和标准差的大小;
(Ⅲ)从被测试的手机中随机抽取A,B型号手机各1台,求至少有1台的待机时间超过122小时的概率。
(注:n个数据
…
的方差
…
,其中
为数据
…
的平均数)
为了解A,B两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A,B两个型号的手机各5台,在相同条件下进行测试,统计结果如下:
手机编号 | 1 | 2 | 3 | 4 | 5 |
A型待机时间(h) | 120 | 125 | 122 | 124 | 124 |
B型待机时间(h) | 118 | 123 | 127 | 120 | a |
已知A,B两个型号被测试手机待机时间的平均值相等。
(Ⅰ)求a的值;
(Ⅱ)求A型号被测试手机待机时间方差和标准差的大小;
(Ⅲ)从被测试的手机中随机抽取A,B型号手机各1台,求至少有1台的待机时间超过122小时的概率。
(注:n个数据







为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示,甲的成绩中有一个数的个位数字模糊,在茎叶图中用
表示.(把频率当作概率).

(1)假设
,现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?
(2)假设数字
的取值是随机的,求乙的平均分高于甲的平均分的概率.


(1)假设

(2)假设数字
